
ESD/MITRE

Software
Acquisition
SYMPOSIUM
An ESDI Industry Dialogue

ESD-TR-87-133

Proceedings
May 6-7, 1986

When L.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the fact the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any right or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION

Unclassified

lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release,
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

M86-55 ESD-TR-87-133

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

The MITRE Corporation

6b. OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZIP Code)

Burlington Road
Bedford, MA 01730

7b ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION Deputy Commander

for Development Plans (cont.)

8b. OFFICE SYMBOL
(if applicable)

XRS

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-86-C-0001

8c. ADDRESS (City, State, and ZIP Code)

Electronic Systems Division, AFSC
Hanscom AFB, MA 01731-5000

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

5720
TASK
NO.

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification)

ESD/MITRE SOFTWARE ACQUISITION SYMPOSIUM PROCEEDINGS, May 6-7, 1986

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT
Final

13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)
1986 May 6-7

15 PAGE COUNT

16. SUPPLEMENTARY NOTATION

This symposium was jointly sponsored by MITRE and ESD, under contract F19628-86-C-0001.

COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Ada*
Software Acquisition
Software Requirements Definition

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This document is the proceedings of the Software Acquisition Symposium held May 6 and 7,
1986 at The MITRE Corporation in Bedford, Massachusetts. The symposium was co-sponsored
by MITRE and ESD. Speakers from The MITRE Corporation, the United States Air Force,
and industry exchanged views on software acquisition, Ada*, and software development
environments.

*Ada is a Registered Trademark of the Department of Defense (Ada Joint Program Office).

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT
□ UNCLASSIFIED/UNLIMITED ED SAME AS RPT D DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME 0F RESPONSIBLE INDIVIDUAL
Diana F. Arimento

22b. TELEPHONE (Include Area Code)
(617)271-7454

,22c OFFICE SYMBOL
Mail Stop D230

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

.

». ..« .. •*

UNCLASSIFIED

8a. and Support Systems.

UNCLASSIFIED

ESD/MITRE Software Acquisition Symposium
An ESD/lndustry Dialogue

May 6 and 7, 1986

Sponsors:
Electronic Systems Division, AFSC
Hanscom Air Force Base, Massachusetts

The MITRE Corporation
Bedford, Massachusetts

Symposium Chairpersons:
Robert J. Kent
Director of Computer Systems Engineering
ESD

Judith A. Clapp
Assistant Director for Software Technology
The MITRE Corporation

Approved for public release; distribution unlimited
MITRE Document M86-55

Contents

Opening Remarks

Mr. Charles A. Zraket 3
Maj. Gen. Thomas C. Brandt 5

Session 1 ESD/MITRE Views of Software Acquisition

Mr. Anthony D. Salvucci 9
Dr. Richard J. Sylvester 13
Lt. Col. William E. Koss 21
Mr. Delbert D. DeForest 24

Session 2 Industry Views of ESD Software Acquisition

Mr. Jack R. Distaso 29
Mr. Robert J. Köhler 34
Mr. R. Blake Ireland 37
Mr. Leonard W. Beck 41
Mr. Ernest C. Bauder 44

Session 3 ESD/lndustry Dialogue

Mr. Alan J. Roberts 51
Session 3 Panel 52

Session 4 Ada* and Software Development Environments

Dr. Charles W. McKay 57
Mr. Gerald E. Pasek 61
Dr. Nelson H. Weiderman 64

Session 5 Should There Be a New Life Cycle?

Mr. Dennis D. Doe 71
Dr. Edward H. Bersoff 74

"Ada is a Registered Trademark of the Department of Defense (Ada Joint Program Office)

Session 6 Are New Business Practices Needed?

Ms. Pamela Samuelson 81
Maj. Gen. Henry B. Stelling (USAF/Ret.) 84
Dr. Barry W. Boehm 86

Session 7 Where Do We Go From Here?

Dr. Barry M. Horowitz 93
Brig. Gen. Michael H. Alexander (USAF/Ret.) 95
Mr. William L. Sweet 97
Mr. John B. Munson 99
Dr. Barry W. Boehm 101
Mr. A. Paul Arieti 103
Maj. Gen. Thomas C. Brandt 105

Speaker Biographies

Opening Remarks

Charles A. Zraket
President and Chief Executive Officer
The MITRE Corporation

Good morning. I'm pleased to welcome all
of you here this morning on behalf of
ESD and MITRE. I would like to give you

my impressions of the software acquisition prob-
lems that I have come across through our work
here for ESD and over the past year or so while I
have been serving on the Defense Science Board
Software Task Force.

A few years ago, we conducted a major study
at ESD and found that software acquisition was
probably the largest acquisition problem that
ESD had. It is no surprise that the continuing
growth in large scale, complex, software-intensive
DOD systems coupled with rapidly changing
technology has strained the ability of almost
every agency in the DOD to effectively manage a
controlled software development. And because
software drives the overall performance of both
C3I systems and weapons systems, deficiencies
in software development and production have an
adverse effect on overall system performance.
We find here at ESD, for example, that even
when software is only five to ten percent of the
total acquisition cost, it essentially drives the
schedules and the performance of the overall
system.

This problem is exacerbated by a parallel and
continuing growth of software in the commercial
sector. The commercial software market is almost
20 times as large as the DOD market, so there is
great competition for highly qualified people in
the software business, which adds to the problem.

As all of you from industry well know, the
acquisition of software-intensive DOD systems is
a heavily regulated process, as exemplified by
DOD Directive 5000.29, by DOD-STD-2167, and

by the Federal Acquisition Regulations for Rights
and Data. The rights and data problem is one
that I had not appreciated until recently. The
lack of clarity about industrial rights and data in
software has kept DOD from being able to fully
use commercial practices in software develop-
ment acquisition. We on the DOD software task
force have been trying to determine how we can
solve this problem by changing the DOD regula-
tory structure. We would like to see companies
benefit more from investments they might make
in new software technologies that can help to
increase productivity and reduce costs.

Another problem is the difficulty military users
have in completely and accurately describing the
operational requirements of mission-critical sys-
tems. Formulating detailed specifications seems
to require a lot of iteration, and testing by real
operators in an operational environment. As
most of you know, this need for trial and error
has led to the concept of rapid prototyping. The
use of streamlined prototypes to refine require-
ments and define functional increments with the
users will go a long way toward clearing up the
software requirements problem. Our study found
that the biggest bottleneck in keeping control of
software development was that requirements
problem.

Finally, there is the whole area of software
quality. I believe that the DOD does not usually
receive software products that are truly high in
quality, meaning well-built, reliable software that
is well-specified and documented and neatly
packaged and modularized. We always seem to

ZRAKET•3

go through a lot of compromises during the
acquisition cycle, and the quality of the software
usually suffers. We should be able to do a lot
better in that respect.

In effect, then, what we are going to try to do
is to address these four areas in software acquisi-
tion, looking first at the regulatory structure
within the DOD to see what kind of economic
incentives could be provided to contractors and
what kind of incentives would increase productiv-
ity and quality of DOD software development,

production, and maintenance. Then we will look
at acquisition practices in risk management,
rapid prototyping, reuse of software, evolutionary
development, and use of better metrics, both to
measure progress and to measure quality.

That is a very large agenda, but I hope that we
will be able to discuss many of these issues at
the meeting over the next couple of days.

4 • ZRAKET

Maj. Gen. Thomas C. Brandt
Vice Commander
Electronic Systems Division

The challenge that we face today is really
one of demographics. I am not convinced
that we have enough software engineering

knowledge to propel the technology forward. To
achieve success we must be more efficient and
we must work hard. We at ESD are very serious
about this challenge. The solutions to software
development problems require a joint effort
between ESD and industry.

Let me review some of our activities in this
field. We have established the ESD/MITRE Soft-
ware Center to concentrate on these problems
and improve acquisitions. We have developed
and are using software management indicators
called metrics to assess the planning process and
the parameters of the system. We are asking the
question: "Can this be completed on time and at
that cost?" We are using "red teams," made up
of software experts, to resolve the problems that
stand in the way of efficient and effective acquisi-
tion. We are focusing on the Air Force's Computer
Resources Management Technology Program to
accelerate the implementation of new software
acquisitions and the insertion of these technolo-
gies. Finally, we are showcasing all of this in
the new DOD Software Engineering Institute at
Carnegie-Mellon University in Pittsburgh.

There are a lot of initiatives underway, and a
symposium is a wonderful forum for exchanging
ideas. It permits us to ask questions such as,
"Am I right or wrong?" and, "If I am right, how
are we going to solve the problem?" We have to
establish a larger body of software expertise.
The projected growth in the need for software
appears to be exponential. That is a tremendous
challenge.

I believe we ought to consider the use of a lot
more engineering before full scale development.
I keep asking the folks around here, "Where
are my brassboards, my testbeds; where is my
Exploratory Development money?" And they
say, "We don't have any of that, we are going to
full-scale engineering development." And that, of
course, implies an assumption that risk is low.
Now since I have tended to be a purist throughout
my life, how can you say risk is low if two out of
three programs are behind schedule or the cost
is doubled? We are kidding ourselves. If that is
the case, the risk was not low, whether someone
stood up and said it was or not.

Look at this year in the space business. Half a
dozen years ago I participated with the Scientific
Advisory Board in a summer study on Space,
and we recognized the need for a mixed fleet to
reliably lift our military space satellites. The
shuttle is a wonderful machine, but it was wrong
to assume that it would work every time, forever.
That is crazy, yet it became a fundamental
assumption underpinning all our decisions in
our national space policy. Bad logic.

Now we are looking at the Titan 34D rocket as
an alternative, and it has failed a couple of times.
The Delta rocket failed recently. We have not
entirely mastered this complex technology.

There is a tremendous amount of hard work
ahead, and we have got to be rational and realis-
tic to meet the challenges. One of the biggest of
those challenges for the scientific and engineer-
ing community is to get our acts together and
improve the software development process.

BRANDT•5

Session 1
ESD/MITRE Views of Software Acquisition

Moderator: Judith A. Clapp

Anthony D. Salvucci
Assistant Deputy Commander for Strategie Systems
Electronic Systems Division

In my first year and a half at ESD, I was part
of the operational world with the responsibility
for tracking satellites and computing their

orbits. In those days, there weren't many satel-
lites. There were four analysts, including myself,
and we each computed the orbit for our own
satellite. We used desk calculators for this job. It
was a rather crude form of computation, but it
was reasonable enough since there wasn't much
we could do with the information other than
discuss it with astronomers who would say I
guess you guys were right, the satellite was there
in approximately the time and about the right
quadrant of the sky as you predicted. Today,
that process has changed drastically, as strategic
C3 business has grown considerably over the
years.

Strategic C3 is a process of trying to improve
strategic connectivity, which has three basic
mission areas:

• To be able to provide warning of attack,
whether it's atmospheric, missile, or from
space.

• To be able to get that information to the com-
mand centers where decisions are made.

• To control the forces. This, of course, requires
a variety of communications media that can
last through all forms of conflict.

One could argue that communications is the
glue that binds the strategic world together.
Another view is that strategic connectivity is
made possible by software. Software has become
the cornerstone of each and every element of the
strategic defense posture. And much of this soft-
ware must be developed along with a strategic
program. Very little off-the-shelf software has

been available to us. This is one challenge for the
software business.

Software development problems are as varied
and widespread as are strategic programs, but
government executives must attempt to solve
them. I would like to address these problems
from my perspective as a manager of strategic
systems by discussing what I see as some of the
causes.

First of all, software development in the Depart-
ment of Defense has gotten larger and our depen-
dence on software has grown enormously. When
we look across the world as a whole, we see that
information management in systems, of which
data processing systems and software are essen-
tially the foundation, is booming. It is the largest
developmental area that we have.

As the expansion continues, we need an
increasing number of people to accomplish the
task. Our current personnel resources are being
stretched thinner and thinner. Today, the demand
for people is greater than the supply. An initial
analysis done by a number of people, including
our Software Engineering Institute, indicates we
are graduating fewer and fewer people in this
business. The results show students coming out
of the elementary and the high schools lack inter-
est in the sciences in general and in computer
sciences in particular. We are all clamoring for
these few resources. This is challenge in and of
itself.

Not too long ago, I surveyed the major compan-
ies we do business with and found the statistics
were essentially the same for all companies. The
so-called experienced systems engineers design-

SALVUCCI • 9

ing our software had an average of five years of
experience. Most of the staff had less than five
years of experience, and the old timers were
people with five to eight years of experience. I
think those numbers could easily have been
twice as high 20 years ago. Managers would
simply pull the best people together for a critical
development.

Today, there just aren't enough "best people."
The problem is magnified by the fact that the
challenge is getting bigger and technology is
promising more, but the people to acquire it are
becoming more scarce. This dilemma is common
to all the programs. The human resources prob-
lem cannot be solved overnight.

I am also concerned by the fact that we don't
seem to get the best quality software teams to
work in the Department of Defense (DOD) busi-
ness. There are a number of arguments as to
why. I don't want to go into them all because I
guess I'm not certain as to the underlying cause,
and there may be more than one. The data rights
problems are probably one cause. Rights protec-
tion is not afforded to contractors who have de-
veloped software with their own investment.
Innovative developers, as a result, don't want to
work with the DOD. Others believe the problem
is the way we do business in the DOD, and not a
data rights problem. They point out that the
DOD develops the capabilities it needs rather
than motivates people in the private sector to
solve the problems and have the solutions avail-
able for us to purchase. But the bottom line is
that we are not getting the best people to work
on our programs.

Another concern I have is the use of what ESD
calls "graybeard teams." When we are in the
process of selecting a contractor, we receive a
great deal of effort in the proposal phase of the
program. The best technical writers are brought
together to present the best cases in order to win
the job.

We often find, however, that teams mustered
together to work the program from day one until

it's completed aren't necessarily of the same
caliber. The selection process, therefore, is not
based on picking the best team for the job, but
the best company presentation. We have even
found companies who hire other companies to
write proposals. This doesn't help us choose the
right team to work the problem. Since qualified
people are crucial to the development process,
this is an important aspect of the selection
process.

The difficulty with the qualified people is not
just on the contractor's side. We have a similar
problem on the government side. There are too
few experienced people to go around. As a result,
we often find out after the fact that pivotal deci-
sions in a program are made by newcomers, by
those who are working hard, who have got a lot
of potential, but don't have much experience to
bring to the floor. As a result, many selections
are best choices based on limited experience of
the teams formed to evaluate the bids.

We have turned to a process in which we take
the battle-scarred members of our staff, so-called
"graybeards," for critical procurements and per-
form what I call "orals" with the contractors. I'm
not as interested in a proposal as I am in who is
going to work the program, who the chief engi-
neer is, and who is going to run the software. It
makes sense to identify the key players and dis-
cuss with them the pending procurement, their
approach to the problem, their experiences, and
the "what-ifs" in terms of how they have planned
their activities for those times when everything
does not go well.

We get some interesting results in this process
that don't always match up with the evaluated
results from the paper proposals delivered by the
contractors. The process we're using is valuable.

I'd like to say a few words on management by
metrics. We are supporting the application of
metrics to software management. Most people
address metrics as tools for inspecting the pro-

10 • SALVUCCI

cess, and they can certainly be used for that.
One of the greatest advantages of metrics, how-
ever, is that they exist in a formal way, that there
is a plan. Too often we find that activities, both
on the government side and the contractor side,
get off and running before there is a plan of what
is to be accomplished. We must determine ahead
of time how we expect to get to the goal, and
what resource will be used. Too often we make
selections based on the good ideas people have
without worrying about the mechanics of getting
there.

A primary value of software metrics is that
they support this kind of planning. Taking snap-
shots or slices of a program and doing that for
each element of the program is a very good way
of checking on the progress of a plan. It can help
make sure that all the resources allocated to the
job are in fact being used, and it can verify
whether you're going to get to the end of the
product on a reasonable time match as outlined
in the contract.

The inspection process is also important. In
the inspection process, there are two ways of
looking at the data that would fill in a metrics
chart. One, of course, shows where you have
been which gives you an idea of how well you
are doing.

Another value of software metrics is that they
can be used to compare your forecast to the
forecast that your program manager or software
manager is giving you (Figure 1). The curve
provided by the metrics represents the productiv-
ity of your software team. If you have gone to
many program reviews, you always find program
managers — and I was one — who tell you that,
no sweat, just a little bend in that curve and we
will get there. But if that little bend represents
double the productivity over that phase of the
program, is that possible? Even if I were willing
to double the amount of the resources, is the
experience base of the resources I might add
equivalent to the experience of the team that has
built up that productivity curve? Software metrics

Software Reporting Metrics

100

CD o c
co
E

CL

Duration of Program

Figure 1

can be very valuable if they stimulate discussions
about what is really possible at a given point in
the program. They can prompt one to think in
quantitative terms about where the program
really is and where it might go.

The subject of internal contractual audits is
not a popular topic, but I am convinced that we
have missed an opportunity in this area. We
have built up over the last several years an inter-
est, or perhaps a need, to form Independent Vali-
dation and Verification (IV&V) teams. These
teams are independent in the sense that the
government will form a team or hire a company
to do that work for them and monitor the work
of the contractors. Having been inspected in the
past, I understand the feelings of those being
inspected, but being at management level in this
business today I also recognize the need for
inspection.

I believe that we have used the IV&V approach
incorrectly. It hasn't solved the problem because
management on the government side is not going
to work the problem. If the problem has been

SALVUCCI • 11

contracted out to industry, it's management on
the industry side that needs to work the problem.
Those are the people that are being paid to work
on the problem.

I don't see enough formalized internal inspec-
tions by industry management. That is what I
mean by that internal contractor audit. I do not
mean government inspection teams; they should
be contractor independent inspection teams that
ultimately report to the same boss somewhere in
the hierarchy of that corporation.

Any of you in the DOD that have been in an
Operational Command and have faced up to an
Operational Readiness Inspection (ORI), know
that you give the inspection team a lot of respect
and they get access to all the data they need.
When they report something, they go overboard
with regard to identifying the details and the
facts that are there and, of course, their own
conclusions on the causes of the problem and
potential solutions. Management in industry
needs that kind of insight in order to make
decisions.

Not too long ago, General Bill Creech liked to
push the philosophy that you always keep man-
agement informed as soon as a problem occurs.
We don't see enough of that soon enough in
industry. Problems are usually identified too late
for management to act, and sometimes only as a
result of government pointing out what the prob-
lem is. When the government points out what
the problem is, the contractor at some level is
usually aware of it, but not at a high enough
level to be effective at controlling it.

The future holds a number of challenges. The
problem of insufficient personnel resources is the
most fundamental one. We must somehow free
ourselves from dependence on labor resources to
accomplish our tasks. The problem of supply of
labor is compounded by the growth of our busi-
ness. We must turn to technology to assist us as
we are trying to do in every other arena to lessen
our overall dependence on a large, highly skilled
labor force.

12.SALVUCCI

Richard J. Sylvester
Director, MITRE Software Center
The MITRE Corporation

Iwant to talk to you today about what I believe
to be a change of emphasis in the last year
and a half at ESD. General Chubb has insti-

tuted a number of ad hoc government assessment
teams to review the status (primarily the software
status) of various programs. There have been
about twelve of these "red team" reviews focusing
on software. Some of you are from companies
that have had the "pleasure" of our visits. I have
been affiliated with six of these twelve reviews
during that year and a half.

The purpose of the government assessment
teams or "red teams" is to improve communica-
tions about what is happening on a specific pro-
gram and to come up with assessments and
recommendations. These teams are usually struc-
tured with some Air Force personnel and some
MITRE personnel. A team may consist of one or
two people for a very quick assessment, or as
many as ten people with outside consultants in
special areas, in which the assessment may take
a month or longer.

The team usually prepares a charter that
focuses their activities. It may be instituted dur-
ing any phase of a program — during source
selection, in some cases or prior to Preliminary
Design Review (PDR) — but generally the team is
instituted later in the program, when symptoms
of problems may be visible, often during integra-
tion and testing. The team usually visits con-
tractors and subcontractors involved with the
development, and the test and evaluation agen-
cies, if the program is that far along. For back-
ground information, the team visits the user as
well as people in the Air Force program office
and in the project offices at MITRE.

Typically, a good review will focus as much on
documentation — existing hard evidence — as it
will on conversations with people at the various
locations. These assessment efforts are very,
very intensive. The idea is to get the most accu-
rate picture possible of the status of the project,
so that a reasonably good set of judgments and
recommendations can be made.

Industry seems to have picked up on this idea.
There have been a number of industry red teams
that check their own projects more or less inde-
pendently. I think that is a very good idea. It
gives the project people an independent assess-
ment of what they are doing in industry, and I
expect to see more of that to come.

I would like to show you the results from three
such case studies; then I will discuss eight gen-
eral areas in which problems tend to exist. Case
1 is a digital communications system; Case 2 is
a large radar system; and Case 3 is a command
and control center.

Let's begin with some characteristics of Case
1, a digital communications system. There are
about 150 nodes in the system, one node being a
central node with a great deal more traffic. The
software for this system comprises 250,000 lines
of assembly language code and three major cate-
gorizations of software. One category dealt with
what is called base software, which is a secure
element of the system, one dealt with interface
software, and the third dealt with application
software. There were two subcontractors and
one prime contractor involved. One of the sub-
contractors did the bulk of the base software,
another subcontractor did the bulk of the appli-
cation software, and the prime contractor inte-
grated the system.

SYLVESTER • 13

This particular system experienced initial oper-
ational test and evaluation (IOT&E), and as a
result, software instabilities were identified. In
other words, during IOT&E, the test spanned a
scope larger than the specification for the soft-
ware indicated. "Creative play time," where op-
erators were trying to break the system, was
involved; when that happened, the system as
it was designed shut down and restarted itself.
There were losses of throughput during the opera-
tion of the system. Certain high priority messages
which were required to be delivered at certain
times were delayed. There was a peak loading to
be achieved; it was not quite achieved during the
initial operational tests. In all, some 360 software
deficiencies were reported over the month of the
IOT&E.

The assessment team's approach was to visit
all the concerned parties and to gather as much
documented evidence as possible. The team
looked at computer program development plans,
specifications, informal work, trouble reports,
and schedules. The assessment was really benefi-
cial to this program because the team was able
to show that the program in general was not a
software disaster, that the trends were positive,
and more time was needed.

The first kind of trending information that the
red team generated was error-free performance
(Figure 1). On the horizontal axis, seven months
of schedule and time are shown, and below that
the amount of achieved peak load is shown —
peak minute load that was achievable during a
specific scenario. On the vertical axis are the
error-free hours that the system performed under
load. These data were put together by the team
by taking individual 30-minute tests with a peak
minute load during the middle of the test. Those
tests were concatenated into 10-hour averages
and the trends were drawn up. Clearly, there
was an improvement in the trend of error-free
performance over the seven-month period. That
gave the team an indication that the software in
the system would eventually be able to operate
under peak minute load and be stable.

Error-Free Performance
10

a
CO
o

Y 6

I 5
o
X

CD 4

"Error-Free" =
No restarts, abends,
PGM, checks, hard-
ware failures, etc.

/' I I
Ten Hour Moving 1 ' i i
Average^^ AM 1 i

\ / 1 #1 1 ' 'I
\/ 1/ \| ' 'I

_S i f f i
 l_l 1 1 U L i l_l._. 1.

Mar.
\+~ 50% "*■

Apr. May
63% —

Jun. Jul. Aug. Sep.
 »4»70^o*J8o|-« 870/c

Peak-Minimum Load

Figure 1

A second bit of trending information dealt with
the software Program Trouble Reports (PTRs)
and their closure histories over a long period of
time (Figure 2). Here, the three major software
categories plus the total operational software are
shown. At the time, those curves seemed to be
approaching a horizontal line. There was reason
to believe that the system was improving. The
team looked in more detail at the outstanding
trouble reports at the time of the review. On that
basis, they were able to determine that the trou-
ble reports were localized in nature, that correct-
ing those troubles impacted only parts of the
software. The contractors and subcontractors
had good trouble report systems, so the team
could categorize the trouble reports and deter-
mine that the problems were not global in nature.

14 • SYLVESTER

The team concluded that the software didn't
have to be extensively rewritten in order to make
the system work properly. The fixes were local-
ized. However, the operational tests showed that
there was a design philosophy in handling opera-
tor input errors that was not appropriate: and
even though the specifications may have been
satisfied, the operational testing extending
beyond the specification hadn't been satisfied.

There was an issue of retaining key personnel
among the subcontractors. These people were
scheduled to come off the program much too
early: they were absolutely necessary to handle
the cited deficiencies. The documentation exhib-
ited a great leap from requirements to design.
The key personnel had the information needed
to make that leap in their minds but not on
paper, so it was necessary for them to stay
with the project either until the problems were
resolved or until the information they had was
documented well enough that someone else
could resolve the problems.

The trends in PTR closures and load handling
were very encouraging. However, the teams felt
that the schedule for the completion of the correc-
tions was very optimistic, and that it was more
success-oriented than necessary. The team felt
that the process to make the corrections and
have the system operationally tested a second
time could fail if the work was not event-oriented
rather than schedule-oriented. The team tried to
allocate enough schedule time and resources in
their recommendations, so that this particular
project had a good chance of satisfying a second
test and evaluation activity.

The second case history is a large radar system.
Clearly, there were some important real-time
response requirements. One prime contractor
and two subcontractors were involved. The red
team had been set up to check why milestones
were missed. There was a particular set of display
problems, the solutions of which were important
to the success of this project.

The red team in this activity was looking at a
program that was two-thirds complete. The fol-

Cumulative Software Program
Trouble Report Closure

o
o
_i

^
O
O
CO
h-
CL

00

10

9

8

7

6

5

4

3

2

1

Application S/W
Base S/W
Interface S/W
Total Operational S/W =t=

1981 1982

Figure 2

1983 1984

lowing criteria should have been met at this
point in the development cycle: requirements
and design complete and stable, particularly
software design; baseline strongly managed;
interfaces defined and controlled; coding nearly
complete; test and diagnostic tools in place; a
strong integration plan; and the remaining activi-
ties scheduled with adequate reserves.

Now let's see what the team found. Many activi-
ties were being run in parallel and were planned
that way. Individual activities had highly opti-
mistic schedules. Because of the highly parallel
schedule, the effects of slips tended to ripple
through the schedule and serialize it because the
parallel activities required more coordination
than the team thought was possible. They felt
that the troubles would be pushed downstream
to meet short-term schedules, making software

SYLVESTER • 15

integration even more difficult. People would
take the easy things first, make the token mile-
stones, and push troubles downstream; the sched-
ule problems would get worse, and any kind of
regression testing would probably be limited or
would ripple through the whole schedule causing
further extensions.

The most critical problem in the team's view
was the display systems. The displays were the
principal tools for doing the software test and the
integration test, yet they were the most compli-
cated elements because there was hardware
from three different vendors and software being
done by the prime contractor and the two subcon-
tractors. Any delay or inoperability of the display
system would seriously impact the integration
testing.

There were several problems with the display
system. There was a "hang" problem; with cer-
tain communications to the display, the display
would stop the entire system, and the system
would have to be restarted. There was a response
time problem. The displays were responding to
operator actions in a much longer time than
the specification indicated. These were critical
problems.

Not all of the display software was being done
to the same baseline. The subcontractor, who
was on a firm fixed-price subcontract, was work-
ing toward the original baseline. The prime con-
tractor had upgraded his own baseline, but had
not upgraded the subcontractor's baseline.

There were a variety of other problems, not the
least of which was that the management was not
really paying very much attention to the software
problems. In subsequent months, the display
problems did slow down the integration and
testing substantially and impacted the schedule,
as was anticipated. A series of integration difficul-
ties were also identified.

At this point of the program, after 32 months
out of 48, one would expect the design to be
pretty stable, since software was being written.
However, there were elements of the design that
were not stable. There were questions about

what the design meant to the people who were
implementing it. There was a process for answer-
ing these questions, but it impacted the schedule.
Some maturity in the design at an earlier point
would have been the right approach in this
activity.

Let me move on to Case 3, the Command
and Control Center. The software consisted of
250,000 lines of FORTRAN and assembly code,
and was to be run with a commercial operating
system. There were two subcontractors and one
prime contractor on the job. This program had a
variety of schedule problems. I will focus on the
test and integration phase because this is where
everything seems to hinge. When one starts los-
ing the schedule up front and one holds to the
same completion date, the result is a compression
of test and integration.

In this example, there were three estimates of
the schedule (The earlier part of the program
before coding is not shown on the schedule in
Figure 3). At the time of award, the schedule
showed nine months to accomplish the coding
until the start of formal qualification tests. Formal
Qualification Test (FQT) was three months in
length. The integration test was four months in
length, with an Initial Operational Test and Eval-
uation (IOT&E) of about a month, then an instal-
lation phase, ready for Initial Operational
Capability (IOC).

A second schedule estimate was made by the
contractor in December of the year 198A, and
we see a slip at the front end. The actual start
was three months later. We had a stretch of a
month in the FQT. and a stretch of a month in
the integration of tests.

Four months later in March of 198B, a new
update to the schedule showed that coding prior
to FQT took 12 months, FQT would take seven
months, and the equipment could not be installed
until later because the place where it was to be
installed wasn't available. So we had the initial
estimate, the December estimate, and then the
March estimate.

16 • SYLVESTER

History of Schedule Changes

198A

| M |A| M| J| J | A| S|0| N | D

198B

J | F | M| A| M| J | J | A| S | 0|N |D

198C

Fj

A CODING -^FQT

A FQT

D TEST

h -I

h i IOC

IOT&E
INST

-qj
CODING *- FQT

C FQT IOC

8A TEST- IOT&E
INST

^h*

A CODING *- FQT

R FQT

r««h 12

8B TEST- IOT&E

INST

5 . 2.5

IOC

| M |A| M| J| J | A| S| Q| N | D
INT SYS

J |F| M| A| M| J | J | A| S | Q|N |D _J

198A 198B 198C

Figure 3

SYLVESTER • 17

Let's take a look at the FQT process. Figure 4
shows the period of time from the beginning of
December to the end of February for the contract
award estimate for FQT. The December estimate
ran from the beginning of December to the end
of March. The March estimate ran from the begin-
ning of March to the end of June. This was the
status when a review was done at the end of
May.

Figure 5 shows the March 198B integration
test vs. actual tests. The integration testing itself
is stretched out considerably farther than the
plan. The contractor was far behind plan one
month after this plan was made. This kind of
trending information is valuable in assessing
how you are doing on the schedule.

Some 353 tests had been planned, of which
about 290 or 82% had been completed. Some-
thing like 7,700 discrepancy reports had been
made, and there had been no slowing in the rate
of the reports.

It would be very helpful to have a good, rational
way to try to project the completion of problem
reports based on some good, historic data that
one could gather during the process. That seems
to me to be very difficult to manage.

In many cases hexadecimal dumps were being
used to try to debug, and this was taking a lot of
time. At this point in the program, there was no
idea as to whether system performance was going
to be met because the software was not being
integrated on the final configuration. There was
data only from a model and not from the execu-
tion of the software itself in order to assess per-
formance. By January of 198C, the software
was really not considered mature.

Those are the three test cases. Let me make a
few comments about the variety of common
problems that the review teams have unearthed.

Often, the contractors selected are new at deal-
ing with the Air Force or ESD, and have never
done B specifications before. It's very rare that
we get a good B5 specification for software; there
is either too much design information that is
baselined, or too little information.

Another common problem is that the definition
of a stress test or loading test is often weak in
the specification or left for later definition. Until
the load test is defined, the goals for sizing and
timing are difficult to attain and design is not
finalized. Unless the load test is realistic when
you get into operational tests, the system could
be deemed unsatisfactory.

It is very important to capture the software
design with good documentation and not leave it
in the minds of the developers. Perhaps DOD-
STD-2167 will help do that. Red teams see big
jumps from the B5 specifications to the C5
specifications in some of the programs that
they review.

As I have already discussed, if a program man-
ager remains schedule-driven when he's in seri-
ous trouble, he tends to get into worse trouble.
We have seen a number of programs where the
discipline breaks down when you try to drive
against an unrealistic schedule and the people
can't do it. If the contractor is too tightly con-
strained by the schedule and cannot put quali-
fied staff on to relieve that constraint, one has
to think seriously about adopting a schedule
that is event-driven.

One of the reasons test and integration are
complex is that there is a tendency to define
configuration items orthogonal to easy integra-
tion. I have seen several programs where the
configuration items take a lot of scaffolding in
order to exercise them before they can be inte-
grated. A different definition of configuration
items would allow them to be implemented end-
to-end, in levels and in smaller blocks, and tested
by releases. This would permit additions for
more capability at another level, and could save
on the building of special drivers for the testing
activity.

Management attention to software is a key
element. Sometimes the program manager just
doesn't tune in; he lets somebody else handle it,

18- SYLVESTER

Formal Qualification Testing Plans vs. Actuals

100%"

800/0—

60%—

40%-

20%-

198A

Nov. I Dec.

198B

Jan. | Feb. | Mar. | Apr. | May | June Jul. Aug.

Nov. I Dec.
198A

Jan. Feb. I Mar. Apr. May | June | Jul. Aug.
198B

Figure 4

Number of Integration Tests March 8B Plan vs. Actuals

ioo%-

80%-

60%-

40%-

20%-

198A

Nov. Dec.

198B

Jan. | Feb. | Mar. | Apr. |May |june | Jul- |Aug. |sept.|Oct. |Nov.|Pec.

198C

Jan. | Feb. |Mar.

IOT&E
(INST)

Nov. I Dec.
198A

Aug. Isept.loct. I Nov. bee.
198B

Figure 5

Jan. I Feb. iMar.

198C

SYLVESTER • 19

and he tries to make decisions based on someone what their subcontractor is doing. If it's a fixed-
else's interpretation. But, the software integrates price subcontract, he's going to work right to the
the system; the software provides the system letter of the contract. As a prime contractor, one
with its functionality. So it's important to apply must have visibility into the subcontractor's
the right management skills, even at the top work and assure proper communication, so that
level. the subcontractor's activities integrate into the

Subcontractor management is extremely impor- system as a whole,
tant as well. Contractors need the visibility into

20 • SYLVESTER

Lt. Col. William E. Koss
System Program Director for Granite Sentry
Electronic Systems Division

Over the last 15 years or so, there have
been many studies on the software prob-
lem. These studies were folded into initia-

tives that in turn are folded into bureaucracies.
In most cases we don't really solve the problem,
so we go back and study it again, and the process
continues. I will try to bring together the initia-
tives and studies on software development and
the actual practice of software development.
Given the entire universe of activities in software
development, what do we need to do, and what
are the things that actually make a difference?

The software development process today is
very labor intensive, and all of our major systems
have a work breakdown structure. The more
complex a software system is, the more we must
compensate for that complexity with a longer
schedule to allow the communication deficiencies
to be brought into line with the software
development.

What may start out as a straightforward prob-
lem becomes a complex situation when you
consider the management structure, the organiza-
tional structure, and the communication ineffi-
ciencies. The automobile industry is an example:
an American manufacturer has about 10 levels
of management and the Japanese manufacturers
have three or four. Those extra six layers of man-
agement take their toll in product quality, cost,
and schedule. Communications inefficiencies are
very expensive, and the ability to minimize
them is the key to a cost-effective software
development.

As we compensate for complexity by extending
the schedule, we will bring the cost down to a
certain point, but we're always fighting some
directed date for an Initial Operational Capability

Cost vs. Time Tradeoff

Impossible

Crash Project

Inefficient

Minimum Cost

Allowable Time

Figure 1: with limits, we can trade money for elapsed
time, but it is crucial to recognize the nonlinear nature
of this trade-off and the potential impact on product
quality.

(IOC) that often doesn't factor in the complex-
ities of the development. The software is vitally
needed, so we compress the schedule and the
cost goes up (Figure 1). When the schedule is
compressed there is often a very rapid increase
in cost, and this is characteristic of most defense
software developments.

In 1983, we had a Space Division proposal for
a very large program. We awarded the contract
and directed that six months later we would
have software Preliminary Design Review (PDR).
This first phase of the program represented one
billion dollars. To be responsive, the contractors
had to fit all of that work into six months. The
contractor proposed 145 parallel tasks. Even if
you had one person assigned to each of those
145 tasks, it would take six months just to have
each person talk with one another. We tend to

KOSS • 21

bring that type of problem upon ourselves, and it
certainly points to the lack of practical software
development expertise.

The key point is that we can trade money for
elapsed time, but it's crucial to recognize the
non-linear nature of this trade-off and the poten-
tial impact on product quality. Obviously, if
you're going to compress the schedule past a
certain point, the reliability of your software is
certainly going to diminish and the cost will go
up significantly.

This was known in 1970, yet we still haven't
corrected it 16 years later. The error rates con-
tinue to go up dramatically right at the point in
the development on which we spend the least
time and money: those activities leading to PDR.

Over the years I have gathered data on this
from industry, especially from three contractors
who have done their own internal reviews to find
out where the errors actually occurred in software
development. A total of 85 percent of them
occurred in analysis and design. Only 28 percent
of those errors were found during analysis and
design. The other 50 percent were found in pro-
gramming test, and 22 percent of the errors
were left in operations and maintenance.

I'm now in a program where I have to deal
with maintenance issues. If the cost of fixing
those errors in maintenance was the same as the
cost of fixing them at the outset, I wouldn't worry
about it, but because the cost goes up, we have
to worry about detecting those errors at the right
time. Those errors will not be detected at the
right time in a complex program if you have a
compressed schedule. People want their PDR in
six months, and they're going to get it in six
months, so the software will be of poor quality
and will be very expensive to correct and main-
tain in the field.

There is a severe economic penalty for correct-
ing those software errors in the operational phase
— as much as seven to ten times the cost of cor-
recting them during design. The cost for large
complex systems can be many times more. As

we proceed with more software systems on com-
pressed schedules, it's not clear that we have
enough money in the U.S. Treasury to maintain
all these systems as they come on board. We
really haven't fielded that much software to date
compared to what we will field in the next 5 to
10 years. We must be able to maintain these
systems in addition to developing them.

Software reliability presents another challenge.
As a field of study, software reliability is very
new, and it's not at all clear how stable that
body of knowledge is. There is a vast difference
between the reliability of computer hardware
and the reliability of computer software. For
example, a contractor estimated that the Mean
Time Between Failures (MTBF) for his processors
was 20,000 to 30,000 hours. The MTBF for devel-
oped software was 170 hours and the MTBF for
commercial software was 670 hours.

To solve this problem, we must do a much
better job of developing the B5 software develop-
ment specifications. I have not seen a program
yet that met cost/schedule/performance that did
not have an exceptionally good B5 specification
— there is a direct correlation in my experience.

In the space business, there is also a direct
relationship between the precision and correct-
ness of software requirements and the reliability
of that software. Even if you don't do anything
else right, you at least have to be able to create
good, correct requirements. The software PDR is
a single critical, credible milestone by which to
assess technical requirements stability. Often,
the PDR is also the only point at which we can
talk about reliability and testability. We have to
be able to say that we allocated to the software
precisely those things that we want it to do to
support the system specification.

I am firm in my belief that these crucial aspects
of the program require a good B5 specification. If
you pass this milestone without getting quality
technical assessments, you're not going to have

22 • KOSS

any more assessments. It's going to be manage-
ment by miracle because you're not going to
worry anymore about assessments — you're
going to worry about meeting the next milestone
and hope that all the program activities produce
something.

The need for a B5 specification has long been
established. Whether or not we have ever met
those criteria, we know what we should be doing
and have adequately documented that. In most
cases we have failed in this activity, and I'm
saying we are failing in 1985 and 1986. We are
not meeting this test. If you don't have it in the
specification, then the software is simply not
going to be there. I have found that the B5
reflects reality so well that if you do not pay
attention to it, you won't make an IOC, regardless
of your dedication.

If we know what we're doing, it will be in the
B5 specification. If it's not in the B5 specification
at the PDR milestone, we have to start looking at
the cost and schedule, and then go back to the
conceptual phase and determine when we know
what we need to know. As soon as we do that,
we have to capture it in the B5 specification.
Most B5 specifications in no way reflect what we
know. Rather, the B5 is a general outline. In the
cases I have been involved with over the years,
we are really only about 30 percent there at PDR.
Technical reality and management reality are
indifferent to directed IOCs. Reality always wins.

KOSS• 23

Delbert D. DeForest
Associate Department Head
The MITRE Corporation

In 1984, General Chubb directed the estab-
lishment of a working group to develop
metrics for reporting on software develop-

ment in ESD systems. A survey of people within
ESD and MITRE elicited opinions on what set of
parameters might help track the status of soft-
ware development efforts. This culminated in a
report in 1985 that was released to ESD, MITRE,
and industry. The National Security Industry
Association (NSIA) Task Force reviewed the
report for us and gave us their comments. The
second version of the report has been released
and is now available through ESD and MITRE.

We have defined eight metrics, each with a
different purpose. The metrics are: Software
Size, Software Personnel, Software Complexity,
Development Progress, Testing Progress, Com-
puter Resource Usage, Program Volatility, and
Incremental Release Content. I would like to go
through the metrics and define what each one is
and how we intend to use it.

Program Size is still the best way we have of
determining the effort needed to develop a pro-
gram. Program size is characterized by three
components: new software; modified software,
which is existing software that we think we can
reuse by modifying it slightly; and lifted software,
which is used as is.

The initial estimates of these sizes constitute a
plan. It's important for us to track this through-
out the development to see how the plan might
change. If the estimates are not accurate, then
the effort is going to change.

You cannot track only the top level. If you look
only at the total, you can't really see things like
the shifting that's happening among the three

kinds of code — as they shift, your effort is cer-
tainly going to shift. We are always optimistic at
the beginning of a program. We may expect to
lift a large amount of existing code, but by the
time we get to the end of the program, we find
that it wasn't always possible. The less code you
can lift, the higher your resource requirement.
We want to watch this and make sure that the
manpower adjustments are made, that the com-
puting resource adjustments are made, and that
realignment of the effort and the tracking are
done as the program progresses.

Software Personnel needs to be tracked. In the
past, we have only tracked the total staffing sizes;
now we also need to know the number of experi-
enced people that are applied to the program. In
this case, we have a plan that is generated from
whatever mechanisms are used to decide what
the total effort will be; we then track that plan on
a month-by-month basis. We also like to know
what the unplanned attrition is. Of course, later
in the program, a higher attrition rate has a
greater impact.

Complexity is difficult to define. Estimates of
complexity are not normally maintained through-
out the development cycle, yet most costing
algorithms today use a complexity factor. We are
trying to encourage a revaluation of complexity
as the program progresses. This should institute
a reallocation of resources if complexity starts to
shift from different components or different Com-
puter Program Configuration Items (CPCIs). We
would expect to see the reallocation of resources
following changes in the complexity factors. We

24 • DEFOREST

are not insisting on a particular complexity factor.
Those that the individual contractors are using
are totally acceptable; we simply want to track
the changes.

Development Progress refers to the schedule of
activities during the implementation phases —
the detailed design, coding, and testing of the
modules. We are asking for a plan for the number
of units designed over time, the number of units
tested over time, and the number of units inte-
grated into Computer Software Components
(CSCs), Computer Software Configuration Items
(CSCIs), or CPCIs over time. We will track the
actual progress against the plan over this period
of time. We are looking for discrepancies so we
can understand what is happening at that time
and what it may mean later in the development
cycle.

Testing Progress is monitored in much the
same way. It is a quantitative measure, not a
qualitative measure. We are looking at the num-
ber of tests planned over a period of time. This
method, of course, applies during Preliminary
Qualification Testing (PQT) and on into Formal
Qualification Testing (FQT) and system testing.
The purpose is to track progress against the
plan.

Progress of testing is also associated with prob-
lem reports. We are doing some trend analysis to
see what the closure rate is. We are asking for
information on new reports generated over a
reporting period, so that we can determine how
the problem resolution process is progressing.
This gives us an indication of how each of the
testing efforts is progressing, and how we are
meeting the schedule in completing the testing
efforts.

Computer Resource Utilization refers to three
components: on-line memory, input/output utili-
zation, and CPU time. There is a budget estab-
lished for most programs, so we compare the
actual utilization against the budget line. This
allows us to address these problems in time
before we get into critical parts of development.

Program Volatility is really a measure of the
stability of the requirements. With this metric,
we are able to track action items, generated out
of either design review meetings or technical
interchange meetings, or effect of Engineering
Change Proposals (ECPs), which are always gen-
erated with a line of code estimate of the impact.
We track the ECP impacts as well as Advance
Study Change Notices (ASCNs).

Most development approaches now use the
incremental or build-release approach, especially
in testing. From the baseline and design docu-
mentation, the incremental release functionality
or build functionality is defined. There are a
specified number of units or modules that make
up the particular functionality, and as the pro-
gram progresses we wish to monitor the way
that the assigned functionality for a particular
release might change over time. If it does change,
it normally changes in such a way that many of
the units are pushed over into later builds, and
that is the thing we want to avoid.

Those are the metrics that ESD has been imple-
menting. We are in the process of installing the
metrics and collection methods on a number of
programs. Metrics will be included in the RFP
packages for all new programs. There will be
either a Data Item Description or a paragraph in
the Statement of Work describing information
that must be supplied.

As for reporting the metrics, we're presently
using two methods. One is to make it a deliver-
able, which does not really provide the interaction
that we would like. The second method is for the
contractor's program manager to present this
information at Program Management Reviews.
This gives some responsibility for that informa-
tion to the developer's program manager, so that
he can go to his engineering organizations and
make sure that the information is correct. It also
provides the opportunity for a dialogue between
the developer's manager and the government
program manager.

DEFOREST • 25

Session 2
Industry Views of ESD Software Acquisition

Moderator: Walter S. Attridge

Jack R. Distaso
Assistant General Manager, Systems Engineering and Development Division
TRW Defense Systems Group

I will survey the problems I have observed in
our various programs, list some government
actions and strategies that may follow, and

then try to relate one to the other. I distributed a
list of six software problems to about 15 current
and past program managers, and asked them to
rank the problems in order of significance. Every
manager had the first three at the top and the
last three at the bottom.

The first set of problems consists of the fol-
lowing: unattainable cost or schedule profiles;
insufficient number of qualified personnel; and
incomplete systems engineering/requirements
definition and control. In many cases, either cost
or schedule or both are already impossible when
the bids go in.

Too many programs are in trouble the day the
proposals are submitted, and sometimes when
the Request for Proposal (RFP) is put out. The
problems are sometimes directed in by fixed
dates that must be met whether or not the
requirements are there, or by unrealistic funding
levels. As a result, the contractors become over-
aggressive when they submit their proposals. A
manager doesn't get promoted for submitting a
realistic bid that loses. The result is that every-
body immediately takes shortcuts, getting rid of
tasks that may have to do with the methodology
or the quality. After a while the problems begin
to mount and eventually the people give up.
Some other reasons could be just poor estimating
or lack of understanding of the problem. Despite
good understanding and good estimates, over-
aggressive bidding can kill you right at the
beginning.

The second problem is lack of the right kind of
people. It often happens that because the contrac-

tor has a number of projects that all peak simulta-
neously, there are not sufficient qualified people
to go around. Sometimes the problem is not
having the right people at the right location,
sometimes it's just poor judgment, and some-
times there is a shortage of people with particular
skills. Right now, with the Strategic Defense
Initiative (SDI) going on, all the sensor processing
skills in the country are being stretched, and
finding qualified people is getting tougher and
tougher. If the personnel deficiency is in manage-
ment, there is disaster right from the beginning;
if it's in technical areas, it takes a little bit longer
to discover.

The third major problem is not doing front-end
engineering. Most programs are already in trouble
at Preliminary Design Review (PDR). The basic
quality isn't there because the requirements and
design engineering activities are inadequate.
You're not really dealing with user requirements
because the user wasn't involved. Frequently,
the government thinks that by not signing off on
the requirements specification at PDR they're
buying themselves some time to get their require-
ments better defined. This actually helps guaran-
tee that the program is going to be in serious
trouble. Sometimes the software seems to be in
good shape at its PDR, but it is part of a larger
system that is undergoing some significant tech-
nical changes. You must look at the larger system
PDR to realize that the software requirements
are changing, and that will impact the software
downstream. An early unresolved problem will
be a worse problem later. However, everybody
tries to shortcut the system engineering because
it is not as measurable.

DISTASO • 29

You can sometimes get through with what
looks like a good PDR, even if you haven't done
your homework. The results are that you don't
really have a model of performance; you don't
really know what you're building; and the people
aren't really geared up to do the exact job that
must be done. What you end up with is a pro-
gram in trouble and discouraged people who
know they will be doing the same job three or
four times over while the real requirements get
defined. This usually shows up somewhere in
integration and test, and the problem is often
tied back to the lack of adequate system engi-
neering before PDR.

The other three problems are similar. One of
them is that the contractor doesn't have a disci-
plined methodology. The most common reasons
are that the manager is either inexperienced,
doesn't appreciate the value, or, even more com-
mon, knows better and just doesn't have the
guts to tell his people they are going to have to
go back and do it right. So they accept less than
what is right. Often that doesn't get caught and
that leads to trouble later. Obviously, if you have
schedule and cost pressures, the first thing to go
is methodology because the effects tend not to
show up right away.

At times, you have a prime contractor and
subcontractor who work differently. Although
either style can be successful by itself, the clash
between styles becomes a detriment to successful
completion of the job. An example of this is when
one contractor really wants a hard specification
up front, while the other tends to use a prototyp-
ing or working group approach, defining things
later in a controlled fashion. When you get the
two together, the interface between them may
not work and the project suffers unnecessarily.

The second problem in this set is unused or
inadequate control, reporting, and review sys-
tems. There is a lot of talk about means of track-
ing progress, but if you have a poor system,
you're going to have poor visibility, and you're
going to get the wrong priorities on tasks. Again,

inexperienced management may not appreciate
the value of red teams, audits, and metrics. A
more subtle problem is that you may have a lot
of metrics, reviews, or other milestones, but they
aren't real. If you don't have a process to assure
that the quality is adequate at a given milestone,
then it is probable that the milestone is only
partially complete.

The third factor is the lack of adequate com-
puter and environment resources. Most compan-
ies tend to use environments with which they
are familiar, but if they must use an environment
required by the system design that they don't
have a history with, it can lead to some poor
resource allocation. Sometimes the development
environment is shorted to minimize the bid price,
and often it is due to inadequate capitalization.
Sometimes you size everything correctly, but
because of the peaking process or schedule
changes, you don't have enough resources. Some-
times the people don't know how to best use
what is available. The end result of inadequate
computer resources is lower productivity, discour-
aged people, and morale problems.

What can the government do about these prob-
lems? The first suggestion in Figure 1 is to use
incremental and evolutionary developments. If
you don't have good requirements up front, you
can do some phased requirements definition and
development to get user feedback to help you.

Several things can be done in acquisition alter-
natives; good, open communication is required
so at least the bidders don't have an excuse for
not understanding the problem. A competitive
concept definition (CD) phase can make sense
when the requirements are almost there and all
you need is a little more time to design the
architecture.

Integration contractors are sometimes a good
approach if you're dealing with a system of sys-
tems; I don't think it's particularly good within a
single system. Not everything has to be competi-
tive. Sometimes, a contractor really does have a

30 • DISTASO

Leverage of Government Actions

CHARACTERISTIC
INCREMENTAL/
EVOLUTIONARY
DEVELOPMENT

ACQUISITION
ALTERNATIVES

COST/
SCHEDULE

OPTIONS

PROGRESS
TRACKING

METHODOLOGIES/
STANDARDS

SOURCE-
SELECTION
CRITERIA

CONTRACTUAL
OPTIONS

COST/SCHEDULE
PROFILE

• BETTER
DEFINED
BEFORE
IMPLEMENTATION

• SOLE SOURCE
VS COMPETITIVE

• DRAFT RFP'S

• DESIGN
TOC/S

• c/s
MODELING

• SCHEDULE
RESERVE

•SCHEDULING
MODELS

• COST/
SCHEDULE
REALISM

• FP VS COST
PLUS

NUMBER OF
QUALIFIED
PERSONNEL

• SPREADS
TALENT
REQUIREMENTS

• PERSONNEL
PRIORITIES

• HELPS LESS
EXPERIENCED
PERSONNEL

• KEY
PERSONNEL
EVALUATION

• ELIMINATION
OF FUNDING
GAPS

• GAINSHARING

SYSTEMS
ENGINEERING/
REQUIREMENTS
DEFINITION/
CONTROL

•WELL-DEFINED
INCREMENTS

• COMPETITIVE
CD'S

• DRAFT RFP'S

• FSD DELAY • ENFORCEMENT
•2167

• TECHNICAL
UNDER-
STANDING

• ECP
PROCESSING

METHODOLOGY • MILESTONE
DEFINITIONS

• TASK
PRIORITIES

• PROTOTYPES
• REUSABLE

SOFTWARE
• 2167

•TEST
ENGINEERING

• REQUIRED
METHOD-
OLOGY

CONTROL/
REPORTING
REVIEW
PROCESS

• TIMELY USER
FEEDBACK

• C/S
MODELING

• PROJECT
PLANS

• METRICS
• INCHSTONES
• RESIDENTS

•2167
• ENFORCEMENT
• TOOLS

•REQUIRED
VISIBILITY

DEVELOPMENT
ENVIRONMENT

• RESOURCE
PRIORITIES

• ADA

• TOOLS

• REQUIRED
ENVIRON-
MENT

OTHER
BENEFITS

•USER
INVOLVEMENT

• LOWER PRICE
CONTRACTS

• TRANSPORT-
ABILITY

• RISK
SHARING

Figure 1

better approach, and perhaps working with him
might get you a better program rather than
always trying to play the competitive game.

The government could exercise some cost and
schedule options. Sometimes it is better to hold
off on full-scale development (FSD) until your
requirements are better defined, so you have to
face them up front. There are what I will call
schedule reserves, which means changing the
nominal milestones by adding months that can
be handed out in reserve. If your reserve is given
away by PDR, you know fairly early that you're
in trouble, but at least it gives you some sort of
management options. Better cost estimating
guidelines and options would also help.

Design-to-cost/schedule acquisition approaches
are useful, but are tough in a fixed-price contract.

Many programs are lost during the bidding pro-
cess because the low bidder usually wins. There
should be some way of fixing the price and per-
forming a technical competition to choose the
winner.

There has been a lot of talk about progress
tracking including the use of project plan defini-
tions, milestone definitions, scheduling models,
and metrics. In-plant residents can be very good
if you use experienced people. They give good
advice; they take a perspective that the contractor
sometimes doesn't see because he's too close to
the problem, and they'll work the problems back
at the SPO. You can, however, cause more prob-
lems than you solve if you use inexperienced
people.

DISTASO • 31

The use of methodologies and standards is also
important. Ada is going to create some environ-
ment problems and some environment solutions.
One of the other speakers is going to be talking
about DOD-STD-2167, so I'm not going to say
much about it. Simulation and prototypes help
you in getting your requirements defined in the
early phases, even in the proposal stage.

Up-front test engineering brings some problems
to light sooner. Very frequently we don't define
how the program will be accepted until it is far
downstream. By that time the mind is set, the
people are in place, and the engineering that has
been done doesn't support the real need. You
could end up with a restart somewhere in the
integration process. Both the contractors and the
government are afraid to commit themselves too
early to how the program is going to get accepted.

Of course, source selection criteria are impor-
tant. They should include key personnel and
methodology. We can't forget the technical design
in our desire for better management and for the
lowest bid; that can put the program in trouble
before it happens.

It would be helpful if we could get rid of fund-
ing gaps. These gaps often occur when you have
block builds, so it works somewhat against the
evolutionary approach. One of the ways to lose
key people is to have funding gaps, because good
people will be snatched up by other programs or
organizations. Similarly, long delays in getting
the program started help create an environment
where one team writes the proposal and some-
body else executes the program. Approaches
such as quicker processing of Engineering
Change Proposals can sometimes get require-
ments defined and designed earlier.

"Gainsharing" is an approach where the gov-
ernment tries to encourage the contractor to
share the wealth with the people, whether it's
profit or some other kind of incentive approach.
It can be a potential motivator.

You can match the problems and government
actions and alternatives to see where various

techniques would support or remedy some of the
problems mentioned. For example, if you have a
problem with the number of qualified personnel,
an evolutionary development can help spread
those talent requirements, and that helps over-
come some of the peaking problem. If you have a
good methodology or standard approach, that
tends to help the less experienced personnel, and
you can get better productivity out of them. In
general, progress tracking and certain methodolo-
gies will give you some help across the board
and if the government enforces progress tracking
using metrics, you're going to improve control
and reporting.

Elimination of funding gaps will also help you
keep your key qualified people around. Using a
better approach for cost schedule realism or using
the design-to-cost, design-to-schedule kinds of
approaches can help you overcome the overly
aggressive bid or the difficult funding profile.

Sometimes these approaches have benefits for
the government that are not necessarily directed
toward these particular programs. For example,
hard competition will generally tend to give you
lower-priced contracts, sometimes to the detri-
ment of the program. Methodologies and stan-
dards will often help transportability from one
contract to another. Fixed-price versus cost con-
tracting may provide more contractual options,
but the more you go toward fixed-price, the more
the government gets to share its risk with the
contractors.

The following recommendations cover a num-
ber of these items and give some perspective on
how I think the government might be able to en-
courage contractors and itself to do a better job.

• The government should acknowledge early
that if they don't have good requirements and
if they are not ready to sign on the bottom line,
then an evolutionary development approach
should be applied where at least an increment
can be well defined and developed. The remain-
der can be developed after experience is gained
with the initial increment.

32 • DISTASO

Unrealistic buy-ins, for whatever sets of rea-
sons, are a primary cause of program failures.
The government should consider using some
sort of design-to-cost approach to help eliminate
this problem.
Add schedule management reserves that
require joint contractor and Air Force concur-
rence to allocate. At the same time, provide
incentives for meeting baseline schedules.
Government should require more discipline
and make milestones more meaningful. Make
sure that the quality is there. Define milestones,
so that they cannot be completed until quality
is factored in and achieved. Enforce the method-
ologies and standards that you have agreed to
use; make sure when you get through a PDR
you really do have a system design.
Help keep key personnel involved by eliminat-
ing funding gaps.
The government ought to continue to push
metrics and inchstones and force the contractor
to increase visibility into the program.

In-plant residents are very helpful when they
are experienced; they can be detrimental when
you get the wrong people on those jobs.
Open communication before proposal submittal
is very important. The more information all of
the contractors have, the better they're going
to do when they submit their original bid.
Prototyping and simulation are very valuable
tools to help you get a better handle on your
requirements early on.
Finally, government should get involved in
early system engineering requirements develop-
ment because that is when the problems start.
Make sure that when you get through that
process, the engineering is really done, includ-
ing the test planning and test engineering. You
then know how the program has been accepted,
and I think you will have a higher probability
of success.

DISTASO • 33

Robert J. Kohler
President
ESC, Inc.

ost of my experience in developing soft-
ware comes from my 18 years with the
Central Intelligence Agency (CIA), so I'm

going to talk to you mostly from my perspective
during that time as a government software man-
ager. In the last couple of years that I was in the
CIA, we delivered nine software packages totaling
about 6 million lines of code. All were delivered
on time and within cost; seven worked to specifi-
cation, one worked okay, and one was a disaster.

Of the projects that were successful, the biggest
was about 2.5 million lines of code, and the typi-
cal project was about 750,000 lines of code. The
largest project had 1,600 milestones over the
four-year development cycle, and the typical
project had about 640 milestones. The key is to
lay out a plan at the beginning that is really
good and manage that plan well.

Another key issue is how many government
staff are needed to manage the job. We found
one good person was perfectly adequate to man-
age about three-quarters of a million lines of
code. The problem is finding the right person.

We are able to define requirements for hard-
ware acquisition when we start, so I don't know
why it's always so hard to do it for software. We
solved the problem by spending a lot of time in
pre-acquisition activities, and the performance
against every requirement had to be demon-
strated at Preliminary Design Review (PDR).

The things that went wrong with the disaster
are not surprising. There was an inexperienced
contractor. We put all the files in a commercial
data base management system, and it shouldn't
have been done that way. We sacrificed testing
for schedule. The government's decision to save

money resulted in the development on a machine
different from the one the software was going to
run on.

I think that we as contractors are trying to
respond effectively to the government's need to
have software development done within a reason-
able cost, schedule, and quality, and meet the
software acquisition requirements. Almost every
senior manager in industry is terrified of soft-
ware, however, particularly in the aerospace
business. Not one of our corporate presidents has
ever developed a line of code in his life, and they
don't want to hear about it. The government's
typical reaction that more management visibility
is needed on projects in trouble elevates the proj-
ect, and reports to the president of the company
who didn't want to hear about it in the first place.
That doesn't make a lot of sense, and doesn't
solve the fundamental management problems.

Most government organizations don't know
how to procure software, and don't know how to
manage it, so the reaction on the part of the
bureaucracy is to wrap more bureaucracy around
it. Rules are written to help with procurement,
and if things get worse, more rules are written.
It's a very insidious process.

We have been at this business now for 20 years,
and have been involved in the same discussion
for 20 years. What we really need are some fun-
damentally new methodologies. Today's software
technologies and methodologies do not fundamen-
tally help the problem.

A few myths about software development are
that everything would be okay if only I had a

34 • KÖHLER

good software manager, better people on the job.
better ways of estimating lines of code, a better
acquisition strategy, and more quantitative
requirements. There is an element of truth in
this, but since it is impossible to get good soft-
ware people on every government job. the prob-
lem is essentially unsolvable unless you do
something different.

My view is that there is a short-term solution
and a long-term solution. In the short term there
are two parts: pre-acquisition and acquisition.
Too often in software development, the contract
is let and nobody really knows what they have
signed up for. This is absolutely wrong. When
the contract is let, everybody — the government,
the contractor, and the operators who have to
use the software when it's delivered — must
understand what their program is in terms of
deliverables, in terms of schedule, and in terms
of what it's going to cost.

The use of well-calibrated size and costing
tools is also important. In the CIA, we used Price
S, an RCA model. It worked very well, but it took
two years to get it well-calibrated. People tend
not to want to spend that much time getting the
costing tool well-calibrated, but it's essential to
do so.

Prototypes, algorithms, and methods do help
in the requirements process. Too often the gov-
ernment tries to write all the requirements in
isolation and when they hand the RFP to the
contractor it's just too late. There must be a real
dialogue between the people accomplishing this
job and the using customer to be sure that the
requirements meet the need, as part of the whole
process before you go on contract.

Avoid specifications that drive implementation
by telling the developer how to build the system.
These kinds of specifications comprise one of the
greatest faults of government program offices.

You must obtain the right resources: technol-
ogy, funding, time, and people. When we negoti-
ated software contracts, we added five percent to
the cost and five percent to the schedule for mar-

gin. The objective is to motivate people to suc-
ceed, and you will not do it if you end up with a
schedule that nobody believes they can meet and
at costs nobody believes they can attain.

There are also technology margins. When you
sign up for very sophisticated software programs,
you must figure out if they're going to work, and
what you are going to do if they don't, and build
that into the program at the beginning. Technol-
ogy is money, time, and people. If you understand
where you may get into trouble, you can estab-
lish milestones for deciding if you are in trouble
and, what you're going to do to get out of it. You
need to establish fall-back positions at the
beginning.

At the acquisition phase, never undertake a
program that you know cannot be completed.
Despite people dictating schedules from the top,
you can say no. There's less impact on your
career if you write a credible proposal that loses
than if you take a contract that turns into a disas-
ter. Have a well thought-out plan and stick to it.
monitor the plan religiously, and react to prob-
lems instantaneously.

Establish decision dates for when you're going
to invoke fall-back positions. Invariably, that is
an important thing to do. Performance parame-
ters must be demonstrated by PDR. And now for
the government: don't over-manage, over-review,
or dictate implementation.

Lastly, don't let a software specialist be the
government program manager. He will try to
make the software better, and as the industry
program manager, you will completely lose con-
trol of the program. We made good system engi-
neering people software managers. This worked
well because they didn't know enough to be dan-
gerous, but they knew enough about systems to
manage the program well.

The long-term solution and the real solution,
however, is technology. Ada and knowledge-
based systems are two important kinds of
technology.

KÖHLER• 35

At Lockheed, we found that our problems were
inexperienced people, all kinds of different soft-
ware environments, and vague requirements.
We are building a system on our own called
Plexus, which is a common software devel-
opment environment.

Plexus will attack the documentation cost,
because it will allow software to be developed
without one piece of paper. When you finish the
coding, the system automatically generates the
specifications for you and software coders don't
have to do that distasteful job of sitting down
and typing it up. Trivial work, but when two-
thirds of the cost involves trivial work, it should
be dealt with.

Plexus is a near-term effort; it should be on
line this year. We think it's going to give us a 25
to 45 percent increase in productivity, which
really means reduced cost. It isn't attached to a
mainframe; it's a series of netted PCs with a big
data base controller that can be hooked up to the
mainframes at the right time. It is intended to
encourage sound software practices throughout
the company and provide tools for the developers
right at their desks.

We are also developing an environment called
Advent, a joint effort between ourselves and
Rational Systems, Inc., which has the only Ada-
unique software development hardware that I'm
aware of. We are developing an environment to
produce very large and complex Ada programs
using the Rational computer. The time it takes

to develop software on that machine is much
less than on standard machines. It's not a com-
puter itself; it is intended to target software to
other machines, though it does allow you to do
development. The prompting and the automatic
error detection are so good that people are actu-
ally forgetting how to code in Ada. They just sit
at the machine and write software.

We are also working on a knowledge-based
software development environment'called
Express, which will use domain-specific dialects.
It will allow electrical engineers to code in elec-
trical engineering language and mechanical
engineers to code in mechanical engineering
language. They have already developed the lan-
guage, called Refine, which is in test. The goal is
to allow rapid prototyping of about three million
lines of code in about three months. Now 80
percent of that will be okay and 20 percent will
not be usable, but that is probably a head start
on what normally happens.

We should be able to have executable code
written very quickly in this almost-English lan-
guage and then allow the software to be main-
tained essentially at the specification level. In its
final form, what you will do is continue to modify
the code as you go; the prototype eventually
becomes the deliverable version of the code. We
think we're going to have this ability in about
three years.

36 • KÖHLER

R. Blake Ireland
Manager, Software Systems Laboratory
Raytheon Company, Equipment Division

I suspect that most of us responsible for man-
aging large software efforts and organizations
are nearly overwhelmed by the rate at which

demands are being placed on software engineer-
ing. I suspect that we as software practitioners
have seldom allowed ourselves the time to stand
back and assess what can and should be done
to improve the system. Software management
issues such as recruiting, training, and retention
of quality personnel have not diminished at all
with time, but I don't find that depressing
because it is a measure of the vitality of our
profession.

The inadequate number of software engineers
with the necessary experience and skill levels is
not only a general industry problem for today, it
is also the leading cause of problems in software
development. Therefore, the government's evalua-
tion of a proposed contractor's software capability
and capacity must be a key issue in contractor
selection. If the contractor does not have the
experienced software engineering talent available
to assign to the contract, no amount of manage-
ment legerdemain will rectify that deficiency.

Central to software acquisition is software
management, which is finally beginning to be
codified and understood. At Raytheon, we have
tried hard to analyze each program as to why
things went well and why things did not go well,
so that the benefits of lessons learned will become
our standard practice.

Let me briefly explain the software engineering
function within Raytheon's Equipment Division.
The laboratories are organized according to tech-
nology. The division is organized into business
areas, called directorates, and functional develop-
ment organizations, called laboratories. This

allows us flexibility in grooming our engineering
talent without regard to the rise and fall of con-
tracts. The division's software engineering
resources reside within my laboratory. Director-
ates have the responsibility for bidding and win-
ning the new programs, for managing these
programs, and for providing the program's sys-
tem engineering component over the life of the
contract. They assign development engineering
tasks to laboratories and contract with the factory
for the manufacturing effort once the product
has been engineered. My laboratory actively
participates in system engineering tasks, but in
a support role to the individual directorates. We
are in turn delegated full design, implementation,
and test responsibility during the software devel-
opment phase of the program. We discharge that
responsibility by doing the work ourselves and
by subcontracting to a very limited degree.

The Equipment Division has been responsible
for the development of a substantial amount of
software for ESD over the past dozen years. Dur-
ing the mid-1970s, studies were being done by
IBM under Rome Air Development Center (RADC)
sponsorship that led to the codification of what
we now recognize as structured programming.
The development of the first PAVE PAWS system
in 1976 offered the opportunity for the first seri-
ous application of this methodology. A program
support library was introduced, as were modular-
ity and structured constructs. ESD in turn man-
dated throughput, memory, and storage reserves.
Not unexpectedly, some difficulties were encoun-
tered that translated into mild schedule problems,
but the overall result was encouraging. Meaning-

IRELAND • 37

ful discipline was imposed upon the development
process, and management, for the first time, had
functional visibility into the development of the
software.

Most of our current methodology traces its
roots to this PAVE PAWS program. With only
minor adjustments to the methodology, the pro-
gram that followed, Cobra Judy, met or exceeded
all performance goals and was brought in on
schedule and within budget.

In addition to involvement in many ongoing
ESD programs, my organization plays a signifi-
cant role in all division programs having data
processing content. These range from two-man
technology programs to the development of soft-
ware-in-the-large on weather radar data process-
ing and air traffic control projects, each of which
commands software development teams well in
excess of 100 people.

We have accumulated quite a bit of experience
working with major software subcontractors
over the years. In managing these subcontracts,
collocation properly belongs at the top of Ray-
theon's list. Software engineering does not lend
itself readily to physical separation. The coupling
of the software engineering function with the
system engineering function is of necessity close
and continuous since in most instances software
binds the system together.

In addition, proximity to the hardware effort in
tightly coupled applications is frequently manda-
tory. In those programs where we have subcon-
tracted major portions of the software effort, we
know that we will have a smoother development
if the subcontractor moves his people into our
facility, where they will be physically integrated
into the program. We are, therefore, biased
toward those subcontractors who are willing to
collocate. Nothing can substitute for the manage-
ment insight and control that come from having
the software subcontractor under your roof using
a common set of development facilities and tools.

Raytheon has also found it advantageous to
lend software engineering personnel to on-site

subcontractors to fill a small subset of the posi-
tions that the subcontractor would normally fill.
Not only does this reduce the competition for
local resources, but it also affords us an additional
window into the development effort and built-in
insurance should the subcontractor encounter
difficulty.

To be effective, a subcontractor must be a
working team member during the early definition
phases of a program. Participation in the alloca-
tion of requirements for that part of the system
for which he will be responsible imparts a level
of system awareness to the subcontractor that
extends well beyond the B-level specifications.
Competing the software after completion of
the requirements definition phase defeats this
objective.

Finally, keeping a subcontractor properly
focused on data processor reserves can be a real
challenge. Raytheon has attached performance
incentives, both positive and negative, to both
memory and throughput. In every instance the
subcontractor was able to earn maximum incen-
tive fee and we were only too glad to pay.

Several precepts are essential to our successful
software development efforts. We are firmly com-
mitted to establishing and agreeing to a complete
performance baseline prior to entering the design
phase. Software engineering participates fully in
this baselining process. Full government partici-
pation in baselining is also essential, particularly
when it comes to the locking down of user
requirements.

We have found the incremental software
"build" approach to be a key to developing suc-
cessful systems. Our approach is a simple yet
natural one that follows a "top-down" structure.
We accumulate functionality into increasingly
complex packages called "builds" and qualify
each new increment, at least in a preliminary
fashion. This qualified software is then available
to rendezvous with hardware strings that are

38 • IRELAND

being assembled in a similar fashion, thereby
creating system "builds."

For example, in a typical radar program, the
initial build would simply establish the run-time
environment and perhaps provide some basic
display control capability. This would be followed
by a build that would close the radar loop, thus
affording us a basic radar management function-
ality. Build three would provide sufficient track-
ing functionality to permit us to close the track
loop and so on. Not only does the software
"build," the system also "builds."

Significant benefits derive from this. Software
flows through the system and through the devel-
opment process in manageable chunks, and
reaches a stage of architectural validation early
in the development cycle. Of equal importance
is that Raytheon and the government get early
insight into and confidence in the integrity of the
system. Of course, key to this approach are rigor-
ous configuration management and traceability
at both the software development and system
levels that permit incremental qualification of
each software build.

We have watched with considerable interest
the work MITRE is doing in software reporting
metrics to provide the basis for increased man-
agement visibility, and have incorporated a num-
ber of these metrics into our division reporting
structure. Most levels of our management are
finding development and testing progress indica-
tors to be particularly useful in obtaining quick
insight into project status. However, it is impor-
tant that the metric being tracked be consistent
from program to program and unambiguous. For
example, the metric that marks the completion
of detail design has a specific definition. This
means that a design walk-through has been
held, all action items against that design walk-
through have been closed out, and the program
design language under review has been transmit-
ted to the appropriate level of the program sup-
port library.

Raytheon firmly believes that the government
is a working partner. Our development method-
ology is keyed to the concept of disclosure and
upward traceability at each stage of development,
hence the role of the review and walk-through
becomes paramount. Working-level participation
by ESD and MITRE has become routine in these
activities. We value their contribution to the
review process, and we believe it affords the
government true insight into the overall state of
software. Similar benefits include working partici-
pation during the functional testing process.

We also endorse the ESD/MITRE concept of
the software red team, but they should not be
limited to programs in difficulty. Red team audits
performed routinely at strategic points in the
development process ought to have meaningful
preventive value. Our internal red team efforts
take the following form: The software manage-
ment team presents us with a structured view of
the entire software development strategy, such
as organization, detailed plans, current status,
methodology employed, staffing profile, baselines
established, and tools in use. This presentation
is highly interactive, and is followed by interviews
with individuals selected randomly from within
the development organization. These interviews
help validate the effectiveness of the development
strategy and often provide the red team with
special insight. It is Raytheon's present view that
these internal software red teams are more effec-
tive when carried out without government par-
ticipation, with the proviso that findings and
recommendations are shared in their entirety
with the government; likewise, the results of the
government red team audit should be shared
with the contractor.

The procurement process, unfortunately, has
built-in interrupts that have the effect of placing
the integrity of the entire software engineering
team in jeopardy. Typically, we establish a cadre
of software systems specialists during a major
proposal or a definition phase contract. These
experts play a key role in allocating the require-

IRELAND • 39

ments, defining the interfaces, and setting the
data processing architecture. If there is a long
delay in the award process, we cannot afford to
keep the software team intact. Thus, we some-
times find ourselves starting a contract with a
team that has lost key members to other pro-
grams. I suspect that the overall system suffers
greater damage when software teams are dis-
turbed than when equivalent personnel reloca-
tions occur in other disciplines.

I have no packaged solution to this problem,
but if a solution is to be found, it would appear
to lie in the area of providing a modestly funded
bridging vehicle that would allow us to continue
work on the allocated software baseline while
awaiting an award decision.

From a contractor's point of view, we sense a
lack of government consistency in applying soft-
ware standards and practices, not just service-to-
service or even command-to-command, but also
within commands. Unfortunately, ESD is no
exception. Though DOD-STD-2167 should help,
it won't begin to attack some of the underlying
problems, such as the level of detail appropri-
ate to B5 specifications and variations in test
philosophies.

We commend a unique, innovative feature
that ESD introduced: a periodic award fee that
rewards superior, not just average, contract per-
formance. An evaluation of performance against
clear goals takes place every six months. Soft-
ware schedule performance is a major evaluation
category. It's not easy to win the incentive fee,
but everyone from the software team to top man-
agement is aware of these incentives and is trying
to win them.

We think the following policies and procedures
can contribute to the successful acquisition of
software by ESD.

• Software performance baselines consisting
of B5 specifications and interface definitions
must be approved at PDR and should be the
joint product of the contractor, ESD, and the
command.

• Meaningful government-level participation in
design and code walk-throughs and testing
should be encouraged.

• Consistency concerning software practice
within and among government organizations
should be pursued.

• The contractor should have a metric-based
management reporting mechanism in place
accessible to the government.

• Incremental software builds and tests should
be required as milestones in the system devel-
opment schedule.

• The management of computer resources
through incentives and reserves should be an
integral part of any program of a sizable soft-
ware content.

• Periodic award fee contract features should
receive broader use, to encourage focused man-
agement attention and to provide a formal
opportunity for constructive interchange on
contract performance.

• Finally, red team software audits should be
carried out periodically and routinely, with
open communication of results between gov-
ernment and industry.

I have never been more encouraged than I am
today with our ability to provide sensible manage-
ment control to the software engineering process.

40 • IRELAND

Leonard W. Beck
Group Vice President and General Manager, Software Engineering Division
Hughes Aircraft Company

The basic problem in software acquisition is
the difficulty of defining the requirements
against which the software will be devel-

oped. The most frequent software risk and cost
drivers concern requirements: complexity; high
performance; and excessive, incorrect, and unsta-
ble requirements. The user, the contracting
agency, and the developer each contribute to the
difficulty in generating requirements. The inade-
quate requirements lead directly to cost and
schedule problems.

The user, having to deal with real-world prob-
lems, asks for the best technology to solve his
needs. However, the user is generally not aware
of the cost and schedule consequences of that
technology. Sometimes the user will ask for fea-
tures that are desirable, but the cost far exceeds
their value.

The contracting agency takes the high-level
operational need from the user and generates the
detailed requirements from which developers
bid. The agency personnel have difficulty articu-
lating precise requirements and may overstate
them out of conservatism.

When the developer evaluates the require-
ments, he may see technical problems or conflicts
with the specifications, or he may see modifica-
tions which would be cost-effective, but because
of the competitive environment he is discouraged
from making modifications that deviate from the
specifications. The end result is that a set of
specifications may contain overstated require-
ments, understated cost and schedules, incom-
plete or evolving requirements, have unresolved
conflicts between them, and sometimes have
areas that are not well understood, such as soft-
ware reliability.

If Requirements Are Incomplete,
Cost/Schedule Cannot Be Certain

4.0

3.5

~ 3-°
CO
o
Ü

CD
| 2.5

CD
CL

2.0

1.5

1.0

I
£Töx^ Relative 1

Size

-ß~s-

CiToxj

^2

jlkJ
1.0 1.1 1.2 1.3 1.4

Relative Schedule

1.5 1.6

Since the requirements are incomplete and
uncertain, how can we as developers bid accu-
rately on cost and schedule? The competitive
environment does not encourage realistic esti-
mates on cost and schedule. Further, if you had
a baseline software size and you asked how dou-
bling the size would impact cost and schedule,
several models show that it would lead to 2.3
times the cost and 1.3 times the time for devel-
oping that baseline software. This suggests that
in order to predict cost and schedule accurately
we need good requirements.

BECK • 41

Once the Requirements Are
Completed, We Can Perform

Programs

1 2 3 4 5

Year Started 1982 1982 1983 1983 1982

Original Schedule
(In Months) 38 41 19 25 26

Schedule Performance
| Ratio* 1.10 1.15 1.21 1.19 1.54

Schedule Performance
Ratio After SRS** 1.04 1.00 .88 .90 .80

Months Specs Late 3 6 6 7 10

. Actual Schedule
Ratio = original Schedule

**SRS = Software Requirements Specification

Once the requirements are complete, we know
that we can perform effectively. Hughes Aircraft
Company has analyzed several comparable large
scale programs that deal with embedded real-
time systems ranging from several hundred
thousand to over a million lines of code. The
performed schedule ranges from 10 percent to
54 percent more than the original schedule. How-
ever, the ratio of actual to estimated schedule
after software requirements specifications have
been approved is much more accurate. This
suggests that if we can assemble the right team
early on in the program and have them work on
requirements, we can improve our collective
performance.

We are asked frequently to bid on a fixed price
basis. At the beginning of the development cycle,
there is a wide variance in the size of the pro-
grams that we must consider. As you go through
the development cycle and are eventually ready
to deliver, you know exactly what the require-
ments are. However, we are usually asked to bid
the cost on fixed price contracts at an early point
when considerable uncertainty still exists. What
we need to do is find a way of bidding when

those requirements are better defined. We need
to develop some different acquisition strategies
that will help us to collectively develop better
requirements earlier, and that will enable a devel-
oper to bid accurately on a fixed price basis, on
good requirements.

There are four alternative acquisition strategies:
a Planned Evolutionary Development, a Cus-
tomer/Contractor Team approach, a Cost Plus/
Fixed Price combination, and Midcourse Reset.

Planned Evolutionary Development means
that you develop only the well defined capabilities
first. Defer the ones that you are not certain of,
field an early capability, get user involvement,
develop the next set, and repeat this process as
many times as is appropriate. The benefit is that
you will use your evolving system to get user
interaction and feedback. The drawback is an
apparent schedule extension. Many of our pro-
grams today use evolutionary development, but
they are unplanned evolutionary developments.
I'm suggesting that we plan for an evolutionary
approach for the entire program. If you do that,
you will improve scheduling over your current
practices.

Another method is a Customer/Contractor
Team approach. Here, the first thing under con-
tract is to assemble a team consisting of users,
contract staff, and the developer, and charge
them with developing a good set of requirements.
During this time, the team would use various
methods to help define these requirements includ-
ing models, rapid prototyping, or other appropri-
ate tools. The team would be kept together until
the software system requirements are approved.
The obvious benefit is a direct dialogue between
the parties concerned; the drawback is that some-
body is going to have to be on temporary duty,
probably at the contractor's facility. Also, you
must have the right people to make this work.

The third approach is a combination of Cost
Plus and Fixed Price for the contract. The less

42 • BECK

well-understood and higher-risk tasks can be
done on a cost plus basis while the remainder of
the software can be developed fixed price. This
has actually been done on some programs. An
alternative version is to have a cost plus contract
until the software critical design review, and
then transition to a fixed price contract when
things are better defined. The benefit is that it
will allow the contractor to better satisfy evolving
customer requirements; the drawback is that it is
not clear how to estimate the fixed price portion
on this first approach.

The last approach is basically resetting the
cost and schedule for the rest of the contract at a
selected critical milestone. This could apply to
either a fixed price or cost plus contract. The
benefit is that it will allow realistic cost and
schedule management. The difficulty from the

government's side is preventing the contractor
from buying in if you know there is going to be a
reset. I would suggest that at the beginning of
the contract you might negotiate productivity
rates, e.g., so many lines of code per person
month, so much cost per person month. You
could also say that the schedule will be deter-
mined by a model dependent on the size of the
resulting software.

In summary, all software cost and estimating
techniques are driven primarily by the size of the
software, and size is the direct function of require-
ments. I presented four different software acquisi-
tion strategies. If used either individually or in
combination, I believe they will enable us to
achieve realistic software cost and schedules.

BECK • 43

Ernest C. Bauder
Manager of Air Force Systems Engineering
GTE Government Systems

I volunteered to be on the DOD-STD-2167
Defense System Software Development Review
Panel because I thought it would be a good

way to invest a portion of my life. At the time, I
didn't realize that it was going to be such a large
portion of my life, but it has certainly been worth-
while. It has given me an insight into what many
companies and government agencies are doing
with respect to software acquisition.

I will spend most of my time talking about
DOD-STD-2167, and specifically tailoring,
because I think that is really the key issue. DOD-
STD-2167 is one of the items that makes up the
2167 Software Development Standard (SDS)
package, which consists of several components:

Joint Logistic Commanders' Joint Regulation
— Management of Computer Resources in
Defense Systems

DOD-STD-2167 — Defense System Software
Development

DOD-STD-483A — Configuration Management
Practices for Systems, Equipment, Munitions,
and Computer Programs

DOD-STD-490A — Specification Practices

DOD-STD-1521B — Technical Reviews and
Audits for Systems, Equipment, and Computer
Programs

24 Data Item Descriptions (DIDs)

The JLC Joint Regulation on the Management
of Computer Resources in Defense Systems con-
sists of rules by which the government is to con-
duct its own business; it is being implemented
by each of the services as they see fit. The Air
Force folded it into Air Force Regulation 800-14,

and that process has been underway now for
about a year.

Then there is DOD-STD-2167 itself, a document
of about 100 pages that received close to 10.000
comments. A fair portion of those comments,
however, were on the Data Item Descriptions
(DIDs). There is a complement of 24 DIDs, which
are part of 2167, and also the updates of DOD-
STD-483A, DOD-STD-490A, and DOD-STD-
152IB. These revisions have only to do with
software. We removed some appendices from
documents 483A and 490A and put them into
DIDs. SDS is a collective package that goes back
about six years, and it is estimated that $10
million of industry and government work have
been contributed to it. All of the industry work
was done on a voluntary basis.

I think we succeeded because we were all
equally unhappy. There is a balance between
industry and government views. Government
people feel that DOD-STD-2167 is terrible because
it doesn't effectively give them the controls they
need, and industry feels that DOD-STD-2167 is
too restrictive. I think that DOD-STD-2167 repre-
sents a pretty good compromise. It is a single set
of integrated tri-service standards.

There is a set of 24 uniform, tailorable DIDs,
although many collapse into a parent DID or
document and merge into others. Some of the
management documents merge into the Software
Development Plan (SDP). Most people feel that
it's better than the existing standards. It also
allows industry to develop tools and use them for
a number of different agencies or tri-service
groups.

44 • BAUDER

Revision A of the SDS is continuing, and should
be ready at the end of 1987.1 am participating in
the development of that document. A number of
SDS issues are still outstanding, and they are the
focus of a lot of criticism. System engineering,
new methodology, Ada capability, and firmware
can be considered a set. As we reviewed this
document, we recognized the isolation of software
from systems engineering. DOD-STD-2167 was
developed by software people, and it does not
really reflect the development of a total system.
An appendix addresses this, and it is covered
more thoroughly in the Joint Regulation. How-
ever, a lot of work still needs to be done, and we
look forward to the update of MIL-STD-499 and
other more comprehensive documents that would
cover the total system development activity.

There are no new methodologies that are
proven at this point. Therefore, rather than lock-
ing in on somebody's theory, we, as a collective
government and industry group developing the
standard, worked to provide alternatives to be
invoked under the contract so it leaves room for
technology insertion. Ada compatibility is a key,
and the Ada community doesn't recognize we
clearly wrote into DOD-STD-2167 that Ada is
beyond DOD-STD-2167, and that it is left to the
agency and the contractor to develop alternatives.
Likewise, firmware is anything but firm, and,
therefore, also employs the escape clause or the
alternative approach.

Several issues cause substantial problems to
industry: informal testing, excessive data, and
software development files and folders. We have
done our best in the time allowed to separate
informal testing from formal testing so it can be
handled in the tailoring phase. We think we have
reduced excessive data requirements, and we
have grouped Software Development Files (SDFs)
into electronic files. If you have a 700,000-instruc-
tion system and you run about 35 instructions
per unit, that is 20,000 units to handle in terms
of informal testing, documentation of those units,
development of SDFs, and tracking. That be-

comes a monumental task in itself, so we have
included in DOD-STD-2167 the capability to
handle them in other electronic modes. If that
same data exists elsewhere in the electronic
media, it doesn't have to be reflected in an
individual physical folder.

There has been some criticism that DOD-STD-
2167 inhibits automation. The stage for DOD-
STD-2167 was set in the late 1970s, so that's
really the technology baseline that the standard
is written against. Also, DOD-STD-2167 does not
cover Prime Item Specifications, classically
known as Bl specifications.

Our biggest concern is blind application versus
tailoring. General Skantze and General Chubb
have sent out letters clearly directing that DOD-
STD-2167 and its associated documents be
applied, and both letters addressed tailoring in a
number of places. It's extremely important to
recognize that SDS is a full set or super set that
has to be tailored down depending upon the
particular application, and by default the govern-
ment buys it all. If you do nothing and invoke
DOD-STD-2167, you get every DID. It's intended
to be tailored down.

During the review process, we argued from an
industry point of view that it ought to be a mini-
mum set to be tailored upward. The government
argued rightly that the default set would then be
inadequate. The burden is therefore on the people
doing the tailoring to make sure that from the
viewpoints of industry, the contract, the buyer,
and logistic command, what is bought is what is
needed so that the end product life is best served.

People seeking tailoring guidance can find
answers in a couple of places. Draft Handbook
287 and Appendix D of the standard itself
address tailoring. The significant feature of these
resources is that they require the people doing
the tailoring to have knowledge of the system
application need and of affordability. It takes a
very strong understanding of software develop-

BAUDER • 45

ment and an experience base to buy only what is
needed. That is true for both government and
industry. There are ample opportunities in the
acquisition cycle to get industry input, and that
should be sought significantly by the government
procuring agency. In the handbook and in the
appendix there is an algorithm that describes the
process by which one tailors, and again it presup-
poses that the person doing it has the required
knowledge.

The government has recently initiated a DOD-
STD-2167 advice hot line, (703) 276-2838. If you
call that number, you will reach one of the con-
tractors that has been hired to provide this kind
of guidance. So far, people calling in on the hot
line and those that I have talked to separately
are concerned about the tailoring and the soft-
ware systems specifications.

I was curious why we received so few com-
ments on the System/Segment Specification
(SSS), and now I know why. Nobody read it. As
people are being asked to apply the SSS to real
jobs, they are calling the hot line, and are asking
where in that standard you write what the system
really does. If you look at the old standards 483/
490, you will find about 10 words that say to put
the description of the system in Section 3.1, but
any system specification has a fairly big section
that talks about the total system.

I want to address tailoring from two dimen-
sions: tailoring out of SDS and specifying alterna-
tives in. The Statement of Work (SOW) is the
driving document on a contract and it is the
appropriate vehicle to tailor to the paragraph
number. In SDS a lot of effort is structured so it's
tailorable to the three-digit or four-digit paragraph
number. But one must recognize the activities,
the products, and the reviews that take place
and only select those paragraphs that apply to
that project, depending on where it is in 800-14
four-phase acquisition.

The vehicle for tailoring is a Contract Data
Requirements List (CDRL). The right DIDs are
selected, then you look at the DID backup sheets

and provide the tailoring through them to buy
what you need. And, of course, the SSS carries
many of the design considerations and con-
straints that can be tailored in that way from
the SDS package.

Specifying alternatives in is done through the
Software Development Plan (SDP), which is the
heart of SDS, and is where the contractor defines
what will be done. In fact, that is the key to the
flexibility that industry wants, the government
controls that the government wants, and techno-
logical insertion.

The SDP is to be prepared as part of the pro-
posal. Nowhere in DOD-STD-2167 do you see
those words; they are in the joint regulation. The
government is supposed to include in the RFP
the requirement that contractors develop an SDP
as part of the proposal. It's also supposed to be
in the Contract Data Requirements List, so it will
be delivered as updated at each phase transition.
It may include the software Configuration Man-
agement (CM) plan, Software Quality Evaluation
Plan, and Software System Programming Manual.
They may either be separate documents or may
be included in the SDP itself. That is an option
in the tailoring.

During the process of developing the SDP tailor-
ing approach, we had a lot of trouble deciding
what happens when SDP changes are made. We
were concerned that, as you reach a phase transi-
tion, you update your SDP, you refine it, and the
government takes several months to approve it.
So in 2167 it says "subject to government disap-
proval." You get approval of the SDP in the first
place; then, if you make a change and update it,
the government has the option to disapprove it,
which we thought was a good compromise in
terms of allowing work to continue.

You have to address non-deliverable software
and the technology insertion items: firmware,
development methodologies, and alternatives.
The SDP is where you define them and get them

46 • BAUDER

approved and brought in by the government. It
is also clearly stated that you are to use modern
processes and techniques.

Defining critical elements relates to phasing
and when to do what in the life cycle. You can
determine what kind of Program Design Lan-
guage (PDL) or top-level design (TLD) description
devices and methods you will use. A lot of people
complain about the "top-down" design. Well,
this is an opportunity to come up with an alter-
native. All of these things are called out to be
included in the SDP.

Among the difficult issues are the software
development files (SDFs). Their contents are to
be defined in the SDP and not to be duplicated
elsewhere. The real world has to address the
design and coding standard for Ada because the
ones in Appendix C weren't designed for, nor do
they serve, Ada. There is a clear disclaimer on
the DID as well as in the body of DOD-STD-2167.

How do you integrate? The contractor defines
the integration in the software development plan.
SDS is supposed to encourage automation of
documentation. The key is that it takes knowl-
edgeable contractor staff to define what should
go into the software development plan and back
it up with experience, which gives your plan
credibility during on-site review. Both the review-
ers and the people who are being reviewed have
to be knowledgeable to recognize the value of
what is being stated and whether it's honest,
forthright, and realistic.

The software development plan will emphasize
the need for knowledgeable people to do the
tailoring on both the government side, in terms
of the statement of work and the DIDs, and on
the contractor's side, in defining clearly in an
SDP what needs to be done.

I will now move to Commercial-Off-the-Shelf
(COTS) hardware and software. We are dedicated
to using COTS as much as possible, and we have
had some successes and some problems. It takes
a concentrated effort by both the Air Force and
the contractor to see that this happens smoothly.

One of the problems is defining the system
functional performance requirements versus the
COTS actuality. This is where prototyping is
valuable. It is important to run the software to
find out what it will really do under certain cir-
cumstances. It turns out that how you use COTS
software is probably more important than what
the vendor bills as its ability to do a certain job.

Modification and source control are very key
elements. Like everyone else, we have been
burned by buying something, using it, and get-
ting a new copy later that doesn't work anymore.
Sometimes we were capitalizing on a bug in the
software and we weren't even aware of it. When
that bug goes, so does the feature. Similarly, new
software should be identified so that it can be
distinguished from prior versions.

Small software companies tend not to under-
stand configuration management as we have
come to know it. We need to select a vendor as
part of our development. We must be very care-
ful; and that needs to be recognized at the time
COTS is specified.

Life Cycle Maintenance is also a factor. Much
of the COTS software isn't going to be maintained
for a long time, and both the contractor and
government need to recognize that early on. My
recommendation is to try some of these COTS
packages in the concept exploration and the
demonstration/validation phases and see if they
really will do the job.

One of my favorite cartoons has the caption:
"We don't know what we're making yet. We just
started." That ties back to the need to understand
the real user's needs. There are three vehicles for
doing this: the operational concept document
and maintenance concept document, the upper-
level or higher-level documented system architec-
ture, and the Computer Resources Life Cycle
Management Plan. Those documents are sup-
posed to come with the RFR They rarely do.
They are very good vehicles, and I strongly rec-

BAUDER • 47

ommend Air Force Regulation 800-14 be
followed.

It's incredible how complex some of the sys-
tems are. That is primarily because the specifica-
tions grow by committee action. Contractors
have to strive for simplicity and especially
address the overall architecture. Use simple-
minded terms and determine what these systems
do and how the system interfaces with other
systems. Some of these systems are huge. We
don't recognize how many thousands of pages or
tens of hundreds of thousands of pages of docu-
mentation have to be prepared, read, and main-
tained by the logistics command or user
command if it has organic maintenance
of that software.

The key point here is people. People have a
limitation. You can only process a "mindsworth"
of information. You either have to get people

with bigger minds or break it down into smaller
pieces and then structure it so the pieces interre-
late simply and understandably. I found that if
we can do that with the system in the architec-
ture, it's amazing how everything falls into place
— integration, testing, and so forth — through
the development process. But if it's confusing up
front, the result is going to be very confusing,
expensive, and hard to maintain. So the key is to
find the right people and retain that knowledge,
skill, and capability.

Interestingly enough, there is more turnover
on the government side than on the contractor's
side. We still have people working on projects
who started with them back in the mid-1960s.
On some of the projects, in the last two years, we
have a new set of faces on the government side.

48 • BAUDER

Session 3
ESD/Industry Dialogue

Moderator: Alan J. Roberts

Alan J. Roberts
Senior Vice President and General Manager
The MITRE Corporation

As I was listening to the experienced people
speaking here, I wondered what we have
been doing. We have been working at this

for 30 years, yet most of the programs are still in
trouble.

In looking at all the problems we are having, I
wondered what it would be like if we hadn't
been here for those 30 years. Today, at least
systems are being delivered; I worked on a num-
ber of programs 20 and 30 years ago that never
got delivered. Most of the time now we are deliv-
ering. We are finding ways to deliver and under-
standing better why we don't deliver.

For a long time, we have been talking about
techniques that are 10 to 20 years off in the fu-
ture as though they were going to change the
next program we had in mind. I think now that
we have a better understanding that this is
not so.

There were some points made in the opening
sessions that I would like to emphasize. If we
don't believe the evidence of why we are not
delivering systems on time and within cost, then
writing better specifications and doing better
cost estimates will not happen. If we don't have
information, we can't write a better specification.
If we must base everything on unknowns, we are
not going to get better cost estimates.

I think we must believe the evidence. We have
to find ways to live with all the hard jobs and

problems of producing software while we wait
for higher order languages and knowledge-based
or expert systems, which will change the process
in a dramatic way.

The project officer or program manager has a
difficult job. We have heard that every program
starts out with too little money, an impossible
schedule, and too little hardware; often we don't
know what we're trying to build, yet we expect
to deliver on a schedule and cost estimate that
was pulled out of the air. Some of the contractors
are able to find a way to work through that maze
and get something accomplished.

In my experience, the way that is done is to
find a way for the government and industry to
get together. They are then able to find a way in
which both of them will benefit. There isn't one
successful program I know of where there was a
strong adversarial relationship between the gov-
ernment and industry. We have to know what
we are dealing with and take the proper action.

If we are all in agreement about the problems,
why are we not getting on better than we are?
We have said that we know what we ought to do
and how it ought to be done, but we are not doing
it. We need to get an agreement on how we will
proceed and then go out and do it.

ROBERTS • 51

Session 3 Panel

Session 3 provided an open forum for public
interchange among the speakers of Sessions
1 and 2 and the audience. The speakers,

representing government and industry, had pre-
sented their views of the problems they had per-
ceived in ESD software acquisition and the
solutions they recommended. This session's
discussion was an analysis of well-recognized
and longstanding problems and a search for
solutions, rather than a confrontation between
two opposing viewpoints.

Requirements were singled out by speakers
and audience participants as the most perplexing
problem for C3 systems. There was unanimous
agreement that it is necessary to define require-
ments and control them in order to estimate the
time and cost of software development, to design
and implement software, and to be able to test
and validate the software against the require-
ments. Yet most people felt that requirements
are seldom well-defined at the start of full scale
development. Proceeding with design when the
requirements aren't firm was cited as the main
reason why software is delivered late.

Defining software requirements more clearly
could be achieved by doing some design and
implementation work to see what's feasible,
especially if the job is new. Rapid prototyping,
simulation, and executable specifications might
be useful means for firming up requirements.
These tools show the cost and risk, and demon-
strate functionality to users and developers. One
method to determine whether requirements have
been adequately defined is to specify how each
one is going to be verified before baselining them.

Industry would like to see more user-developer
communication on the specifications and more
time to see that each party has the same under-
standing of the requirements. All people involved
should sign off on the specification. This includes
people who will implement the software, people
who will test it, people who will maintain it, and
people who will use it.

Another problem with defining requirements
up front and controlling them is that the require-
ments change frequently. This must be antici-
pated — the process must allow for control and
for change. A product that is delivered within
budget and on schedule is a failure if it doesn't
meet user performance requirements.

There is some data to show that if requirements
are well defined, substantially less time is needed
to complete the software. However, government
program offices are wary of stretching the overall
schedule, so the time and resources needed to
more completely define requirements are fre-
quently not there. If the government could speed
up its contracting process, the schedule could be
shortened and more time could be allowed up
front.

Another problem, cultural in the Air Force, is
that the usual length of an assignment is four
years, which probably isn't long enough for a
complex program. This often limits the continuity
of management that is strongly recommended
for industry development organizations.

There are other approaches that industry is
looking into to improve productivity in software

52 • SESSION 3 PANEL

development. One of these approaches is to find
ways to let a system engineer translate require-
ments into a system more directly without pro-
grammers. The Japanese are proving that
reusability leads to 10 times our productivity.
If something already does the job, use it. The
military may have to start buying product
lines instead of custom-built software.

No discussion of software problems is complete
without some comparison to hardware. The soft-
ware people had the last word in the session, but
what they advocated was having the first word
in the system design process.

It was noted that everybody believes you can
fix all the hardware problems with software, so
the hardware is tied down and then the software
people attempt to make the system work. If it
doesn't, it's a software problem. The mistake is
in comparing development software, which com-
prises almost all of the software that ESD buys,
to off-the-shelf hardware. When the day comes
that we write the software first and give it to the
systems engineers to wrap hardware around in
order to achieve system capabilities, then we can
talk about why the hardware and software devel-
opment processes should be the same.

SESSION 3 PANEL • 53

Session 4
Ada and Software Development Environments

Moderator: Christine M. Anderson

Charles W. McKay
Director of High Technologies Laboratory
University of Houston at Clear Lake

For the past three years, I have been privi-
leged to work with an advanced research
team composed of about 100 representatives

from 30 industry organizations that traditionally
support NASA. When we began three years ago,
there had been more than a decade of studies
involving personnel from all NASA centers con-
cerning the space station. They had concluded
that a fully functioning space station program
would represent an integrated end-to-end infor-
mation environment.

The challenge that my team was tasked with
was to go beyond what we had learned in pro-
grams like Mercury, Apollo, and the space shuttle
to look at those truly dark areas with regard to
the space station. We had to identify those things
that are either new, things that we do not know
how to do, or things that we do not know how
to do very well, and to illuminate them and to
try to reduce the risk to the maximum extent
possible.

We were asked to assess the possibility of
applying the tools of the Minimum Ada Program-
ming Support Environment (MAPSE) and assess
whether they would be adequate to support the
full life cycle of the space station software.

Let me give you the conclusions first. Is Ada
ready for use in C3 systems? In the opinion of
my team, the answer is yes. Certainly it is ready
for the design of such systems. Whether it is
ready for the development of such systems
depends on whether the system is a single em-
bedded processor application, a multiprocessor
application, or a distributed network, particu-
larly one that involves real-time and data-driven
applications.

For the design phase, which we think is far
more important than subsequent phases in soft-
ware development, we think Ada provides a very
good base for operating in a software engineering
environment. For the rest of the phases of the life
cycle, we felt that the MAPSE does not support
large, complex, non-stop distributed applications
to the degree we would like. This is not a criti-
cism of Ada. This is a criticism that applies to
our industry, by and large, regardless of what
particular language you may choose for software
development.

The second question I was asked to consider
for this symposium was whether ESD and indus-
try are ready to use Ada. My own opinion is that
we are not ready but it is time to proceed anyway.
We need to make progress. There are many accu-
sations being leveled at Ada that I feel are analo-
gous to shooting the messenger that brings the
bad news. Ada is revealing problems that have
existed for years. We have not come to grips with
them. Ada is putting some things on the table for
people to view. Many of us are uncomfortable
with the fact that we are not appropriately edu-
cated to do the things that we believe need to
be done.

The context of this point of view is require-
ments like those of the space station. It is a pro-
gram that is intended to evolve over 10 to 30
years. It is a large, complex, distributed comput-
ing application with a long schedule of modular
growth. It will involve distributed hosts and a
very large collection of distributed target comput-
ers. There will be many developers in the United

MCKAY • 57

States and around the world. There will be an
integration, verification, and validation host and
test bed. In fact, our informal estimate is that
this is probably the largest computing project
solely for peaceful and scientific purposes that
has ever been proposed. The challenge of our
team was to look at computer systems and soft-
ware engineering for such applications and to
reduce the areas 'at risk.'

To give you some idea of the requirements for
the space station program, it would have ground
stations, free-flying platforms, and space stations,
as three instances of 12 types of local area net-
works. A fully configured space station would
have 23 clusters of computing requirements. It
would have a 10- to 15-year development cycle
and a virtually infinite life cycle. All of the subsys-
tems would be partitioned to isolate implementa-
tion details of different components from one
another. How services of other components are
provided should be totally transparent to contrac-
tors who are developing a component. We looked
at some of Ada's support for modularity, for infor-
mation hiding, and for abstraction.

We asked what life cycle support should a
programming support environment provide for
large, complex, distributed computing applica-
tions such as space station systems. The question
that we were given as a team three years ago we
have answered to our satisfaction and hopefully
to the satisfaction of NASA. Ada has been base-
lined for the space station program, not only
for the components that support host develop-
ment functions, but also for support of the target
systems.

We were concerned with evolving an appropri-
ate systems and software engineering environ-
ment to support this evolving program. The
team observed that the environment must sup-
port more than software. We defined the life
cycle model for a software support environment
(Figure 1).

You must begin with systems engineering,
which is followed by software engineering, which
is followed by hardware engineering. These are

intricately interdependent. Details of managing
people, logistics, and project planning and control
are involved. At the heart of the systems and
software support environment is an information
system that has a project object database that
persists over the life cycle to capture the design
details in the system, software, and hardware
engineering. It also captures all of the details
that led to design decisions and the trade-offs
involved. Configuration management is appropri-
ately integrated along with quality management.

There must also be provisions for the manage-
ment of reusable components in the design
phase, not just reusable source code. As a team,
we believe that the reusability of source code
may ultimately be far less important than the
reusability of design and the other products of
the design process. If you can accurately trace
from the systems requirements through the soft-
ware and hardware trade-offs, and how each
succeeding phase evolves, then you may find
that there is more value in terms of reuse than
can be found in source code libraries. This possi-
bility is a tribute to DOD-STD-2167. We are 15 to
25 years behind in the state-of-the-practice in
software engineering compared to what we know
how to do. A standard life cycle model will facili-
tate improving methodologies, tools, and such
system-level attributes as traceability and
reusability.

It is incumbent on us to adopt good standards
and to tailor them for our benefit. This is a
strongly typed approach to a software support
environment. For instance, PI in Figure 1 is the
requirements phase. The requirements are
intended to be captured in the project object
base as strongly typed objects. They are operated
on by a finite set of technical tools and manage-
ment tools. The only access to the objects in the
project base is through permission and authoriza-
tion to use the tools that manipulate the objects.

It is important to remember that the space
station will evolve over 30 years. The environ-
ment has to be nonstop. We don't have the luxury

58 • MCKAY

A Life Cycle Model for a Software Support Environment

FEEDBACK

Life-Cycle
Management

Life-Cycle
Project
Object Base

TOOLS AND PROCEDURES
(for quality management, configuration management, and object management)

OBJECTS TO SUPPORT ENGINEERS AND MANAGERS

O

=<

Figure I

en
CD

of the shuttle program to build software, simulate
and test it, load it on the bird and fly it, and at
the completion of the mission, do an autopsy.
Imagine instead that there are unattended compo-
nents, that changes in software functionality
must be directed from the host environment,
and that we will be expanding the system over
time.

As you trace through the activities in this
strongly typed life cycle model, you have to deter-
mine if the environment has the capabilities
necessary for our systems life cycle. For example,
consider Ada run-time environments. The first
ones built were for a single processor executing a
single program. It was unfortunate that almost
none of the first run-time environments was
capable of being extended to multiprogram sup-
port. If there had been a more powerful environ-
ment, then by setting the number of programs to
one, we would have had everything in the first
environments. As we move to multiprocessors, it
is an indictment of our approach to implementing
Ada compilers today that compilers tend to target
a single processor. We are working with some
compiler manufacturers to create run-time envi-
ronments that will allow the distribution of Ada
entities to exploit true parallelism.

We are also concerned about the issue of fault
tolerance in distributed networks. We have no
alternative but to think from the very beginning
about this issue or we will have deadlock or live
lock in the target systems.

This gives some idea of the kind of environment
we envision. We expect host environments to be
provided to various contractors and NASA centers
throughout the world. All source code would be
processed and receive final verification before
deployment at an Integration Software Support
Environment facility. Here it would be compiled,
checked against the project object base to see
what components of hardware and software
already exist in the target environment and what
the effect of the new software would be on the
workload so a test plan could be generated. A
check would be made to see that the functional
and non-functional requirements are met.

In conclusion, we have the opportunity and
need to extend the technical tools and the man-
agement tools of the Minimum Ada Programming
Support Environment far beyond today's defini-
tion to be able to support a very large and evolv-
ing program from which we think this country
will benefit greatly.

60 • MCKAY

Gerald E. Pasek
Program Manager, MILSTAR Ground Segment
Lockheed Missiles and Space Company

The MILSTAR system is a DOD communica-
tion system. It consists of satellites, space
ground terminals, and control terminals. I

am directing the Mission Control segment, which
consists of several hundred technical personnel
who are working at Lockheed to provide satellite
servicing and system status reporting. This sys-
tem must be survivable and supportable by mili-
tary personnel.

The challenge is one of applying in a design-to-
budget program available hardware that we call
"off-the-shelf," which means utilizing products
from vendors that are being applied to multiple
projects and limiting the amount of project-partic-
ular tailoring and design. By using off-the-shelf
hardware, you can get the vendor to put in his
own IR&D money to develop the hardware and
thereby lessen the cost to the project. The more
you tailor your hardware to the project, the more
you are going to pay for the entire system.

The other challenge on MILSTAR is that the
platforms may be aircraft, ships, or trucks. In the
case of the airborne platform, every pound of
weight added takes away a pound of person or a
pound of fuel, since the airplanes usually fly at
full gross weight. Therefore, we want to minimize
the weight requirement. In addition, the platform
is not dedicated to the MILSTAR program. Our
role is to control the satellite in the system as
part of an overall mission complement. This
means that we are on various types of mission
platforms where we are being carried only in the
event that we are needed to support the MILSTAR
system.

The environment is DEC-based, using next
generation state-of-the-art 5V4-inch Winchester

disks. All hardware is fully militarized. The disks
can store 140 megabytes on what amounts to a
cigar box size package. This allows us to easily
transport the disks via mail or courier techniques.
We are currently running on a full complement
of the disks, which are packageable. A 19-inch
by 15-inch disk package gives you 650 megabytes
worth of data, which I think is more than ade-
quate for most software databases.

The system has a single operator per platform.
The NASA Space Station environment described
by Dr. McKay includes hundreds of people in-
volved in satellite support; for us to break a sys-
tem down so that it is supportable by a single
individual is, indeed, a challenge. Our goal is to
develop a system that will allow one person, with
reasonable training and retention, to support the
system.

From a survivability standpoint, MILSTAR is a
distributed system. We will have many platforms,
any one of which can support the system. Fixed
ground facilities provide for centralized planning,
configuration management, and software develop-
ment and maintenance. Without centralization
of the software and the database, a distributed
system would never work.

The system weighs about 1,000 pounds. The
MILSTAR operator display is a plasma display
that uses a joystick to control a cursor. We did
not use a touch panel system because that sys-
tem is somewhat difficult to operate in a vio-
lent environment such as a plane that is flying
through turbulence or a ship that is bouncing
around through the waves. In addition, the dis-
play is multi-windowed, similar to a Macintosh

PASEK • 61

type of operating system, so you can see what
is happening in many different places.

The software that we are building runs on the
MILVAX, so all our development is done on com-
mercial VAX systems, using MIL SPEC 483 and
490 documentation. The operating system is
VMS. Development is underway for all of those
pieces of software that we need to run the sys-
tem: real-time processing and control, orbit man-
agement, system management, data and display
support, and diagnostics that tell the operator
what is happening. There is also a set of fixed
ground environments for software and database
support, configuration management, planning
and archive management, and system simula-
tion. In the event of a system failure, the operator
in the field is tasked to keep the system going.
Once the system is running again, someone else
must find out why that event occurred.

This software comprises several hundred thou-
sand lines of code, written in Ada and FORTRAN.
The reason for FORTRAN here is that we believe
we may encounter areas where Ada will be a
constraining factor, in which cases we have
agreement with the government that we will
insert FORTRAN.

Our development environment is in place. We
are DEC-based, including Ada workstations. We
have Rational Systems equipment in place. We
have an in-house training program for our own
people. We also have Ada experts who are avail-
able on an on-call basis to consult with people.

We have recently completed our Part 1 specifi-
cations. It generally takes a couple of years to
finalize Part 1, particularly where you have, in
my case, 30 different agencies involved in the
program.

Part 2 specifications are being developed, and
we are now trying to tailor the documentation.
As you know. MIL SPECS 483 and 490 were not
written in the Ada environment. We must there-
fore do certain kinds of tailoring of the documents
to represent the Ada considerations in the docu-
mentation. Designs in an Ada Design Language

(ADL) are also being completed. The objective is
to come up with a detailed, compilable design.
The tools are being developed to take that ADL
and develop various types of documentation.

Our longer-term production development envi-
ronment is VAX-based with multiple types of
terminals attached. This kind of environment
allows us to use various levels of compilation.
With a Micro VAX system Ada compilation on the
order of 300 lines per minute is possible. The
larger VAX systems can be run at approximately
1,000 lines per minute, depending on the type of
compilation. Rational Systems provides an Ada
compilation engine that runs 2,000 lines a min-
ute and can do partial compilations at a very
high speed. Documentation on the various kinds
of terminals is resident on disks. A copy of this
documentation can be produced on the laser
printer. This allows system engineering to access
the requirements, do traceability, and go through
the configuration control process.

We have a system simulator which represents
to our Mission Control Element (MCE) what the
external world looks like. Our militarized equip-
ment would connect into one of these VAXs for
data and satellite-type generation. We will use
the simulator to test our environments and the
system. This ensures that we are ready to sup-
port it before we interact with the satellite. This
is important because I have seen many systems
crash once they get out into the real environment.

Why did we go with Ada? The MILSTAR sys-
tem is expected to be operable into the year 2010,
if not beyond. We must therefore consider where
the software environment is and where the soft-
ware environment is going. In 1984, with the
permission of and funding by the government,
we conducted a study to look at long-term proj-
ects and assess our course of action for systems
that we will be developing in detail in the mid- to
late-1980s and maintaining through the 1990s
and into the year 2000. The system that was
chosen was Ada.

62 • PASEK

JOVIAL is not a viable alternative. There are
no truly good compilers around that are being
supported by the vendors, and we have had a lot
of trouble with JOVIAL compilers. FORTRAN,
on the other hand, lacks the true standards, and
thereby restricts portability. My management
asked if we could save money by going back to
FORTRAN. The answer that I have been able to
detect from the programmers is that the same
kinds of problems exist with FORTRAN after a
certain point.

One of our goals was to use state-of-the-art
equipment when it became available. We pre-
sume that computers will increase in memory
and become faster and cheaper as time goes on.
We wanted a degree of software portability in
that sense. Ada is also forcing a disciplined design
structure, which will ease the integration and
maintenance over time.

Everyone recognizes that the Ada environment
has too few people out there who are considered
experts today. The typical Ada person that we
encounter is relatively junior in nature, recently
out of school, and does not have a lot of hard
design experience. The design experience that
they do have was in the academic domain, where
time and budgets were not a problem. We found
that with a typical programmer, particularly one
who is adept in Pascal, learning to program in
Ada is accomplished quickly and smoothly. In
one month a programmer can learn the language
and be reasonably proficient in it. One of the
problems is to find people who understand glob-
ally large systems and can work and deal in that
environment.

In sophisticated environments, communica-
tions among people can be a problem. The
programmers become so accustomed to their
terminal that if the information does not come at
them from the terminal, they do not know where
to find it. I have a great deal of difficulty getting
people to move 20 or 30 feet to talk to somebody
who may know the answer. Ada does not solve
the peer group communications problem. As

with any software development effort, develop-
ment under Ada requires very strong leadership,
firm direction, and very close monitoring of
activities.

I have some recommendations relative to Ada:

• Prototyping should be performed early because
Ada code can become a problem from a time
and memory perspective.

• Modeling, with attention to sequence, should
be done on control and internal software com-
munications and database access techniques.

• Test the prototype to assess specific Ada imple-
mentation overhead and throughput perfor-
mance on selected or simulated selected
hardware.

• Study the selected Ada compiler and perfor-
mance of its output code under an Ada tasking
environment and a local operating system
environment without tasking.

• Provide software designers with study results
and development guidelines tuned to the
specific Ada being used and the system
characteristics.

• Assure that lead programmers have "hands-
on" experience with non-trivial programs devel-
oped in Ada with similarities to the present
system. Alternatively, have them do the proto-
typing and tuning of the prototyping early.

Now to answer the questions. Is Ada ready for
use in C3 systems? I believe it is. Are develop-
ment communities ready for Ada? Well, maybe.
My senior management still does not understand
the problem; they are in favor of taking the safer
and proven approach. Are program managers
ready? I am not sure program managers are ever
ready for large software development projects.
Therefore, it will remain a question that Ada
certainly won't solve.

PASEK • 63

Nelson H. Weiderman
Senior Computer Scientist
Software Engineering Institute

Ihave been working on the Evaluation of Ada
Environments project with a small group of
people since last summer. The first thing that

we set out to do was to define some criteria and
a methodology for evaluating Ada environments.
In a nutshell, the methodology is to define some
tests and experiments or user scenarios that are
independent of environments, and use the tools
of those environments to get our results. We
have finished the methodology definition, and we
are now applying this methodology to several
environments. I don't want to report today on
any specific results because the project is ongo-
ing, but I would like to tell you a little bit about
the things that we have learned and the general
state of environments as I perceive it today.

To begin, I would like to say a few words about
the Software Engineering Institute (SEI) and put
this work into context. The SEI is relatively
young; we have been around for just over a year.
We are comprised of about 100 people, and our
major focus is technology transition — getting
the technology out to the contractors that need
it. We are doing work both in technology areas
and in non-technology areas. We have a legal
project, management projects, organizational
projects, and behavioral projects.

Obviously, Ada is a very large part of what we
do, and we treat it not only as a language but as
a culture, including many software engineering
techniques and principles. We are also concerned
with infrastructures for open and integrated
systems. We want to find ways of incorporating
new tools into environments and making those
tools work together. Dr. McKay spoke of persis-
tent information that lasts for the lifetime of a

project and has to be tracked along the way, that
is, persistent object bases. Automated reuse will
be important for design and evolution, as will
artificial intelligence and expert systems.

We at the SEI begin by stimulating these tech-
nologies and doing some research, followed by
acquiring and exploring the technology. We then
refine and integrate, perhaps doing prototyping.
Next, we will install products in our environment
and use them in a production fashion at SEI, and
we eventually disseminate products out into the
real world.

The Ada language is obviously fairly mature.
The maturing process took place over a period of
about eight years, from 1975 to 1983, when it
became a standard. This standard will be in
place for four or five years before any changes
are allowed.

The compiler situation dates back to the com-
pletion of the design around 1980, when people
started working on compilers. The first Ada com-
piler was validated in 1983, and we currently
have 29 validated Ada compilers. The compilers
have reached a state of maturity, and the amount
of change in the design is diminishing. I believe
that we can say that we have production-quality
compilers available today.

The situation with support environments is
that we had a series of requirements back in
1979, culminating with the Stoneman require-
ment. In contrast to the language, the require-
ments for the environments were not nearly as
well designed. There was not nearly as much
input or response to those requirements, so we

64 • WEIDERMAN

really cannot compare the environments to the
language requirements. We have made some
progress, but there is a great deal more progress
yet to be made.

There is some irony in the fact that although
Ada was developed for embedded systems, it has
received acceptance first in the information sys-
tems area, and only recently has it been em-
ployed in embedded systems. In fact, out of those
29 compilers I spoke of, only three are cross-
compilers for embedded targets. There is one for
the 8086, one for the 68000. and one for the
Z8002. This is a relatively young area.

Distributed embedded systems are comprised
of more than one host development environment
and more than one target. We have seen very
little activity in this area, although there are
about six families of multiprocessors now with
names like Sequent, Tolerant, Flexible, and Con-
vex. These processors support distributed host
development.

Ultimately, environments must support het-
erogeneous distributed non-stop embedded
systems: heterogeneous, meaning that the pro-
cessors in this distributed system have different
instructions and architectures, and non-stop,
meaning that we must have environments that
support these run-time systems that change on
the fly. Such environments will not be available
for some time.

We have identified three different kinds of
environments. A layered environment is one in
which we build a user interface around an operat-
ing system that already exists. There is another
kind of environment that I will call incremental,
in which we take an operating system and add
Ada tools, such as a compiler, a debugger, and
an editor. The third kind of environment is an
Ada machine, constructed by building an Ada
environment on a bare machine, possibly using
specialized hardware. The Rational machine is
an example.

We have defined four broad categories of crite-
ria for Ada environments. The first criterion is

functionality, which has to do with what tools
are in the environment and what features are
incorporated into the tools. The tools should
cover the entire life cycle from design and
requirements definition to testing and analysis
and project management. We must determine
whether the environment supports all these
activities of the life cycle.

The second criterion is the user interface. The
most obvious component of the user interface is
the generalized command language, which can
be a menu-driven system or a graphics-driven
system. Other components of the user interface
include the on-line help system, the documenta-
tion that goes along with the environment, and
options such as the ability to view different
objects in various ways.

The third criterion is performance, something
that we are all interested in, and this involves
the efficient use of time and space resources, as
well as response time to users.

The fourth criterion is the system interface.
The term interface refers to how well this environ-
ment communicates with whatever is beneath it.
be it another operating system or a bare machine.
Our goal is to have the environment make use of
all underlying capabilities and not hide any func-
tion unnecessarily.

The quality of an Ada environment depends
upon all of these criteria and their interactions,
as well as the freedom from error and the robust-
ness, or the stability of the environment. Defining
these criteria therefore becomes a process of
iterative refinement.

We have learned in the short time that we
have been in this business that checklists of
functionality are not sufficient. The Stoneman
requirement for environments and the definition
of a Minimal Ada Programming Support Environ-
ment did little more than indicate which func-
tions ought to be available. It did not detail which
features should be in those functions and how

WEIDERMAN • 65

those functions should work. The requirements
indicate only that the environment should have
items such as an editor and a debugger, for
example.

Some of the core functionality of the environ-
ment cannot be added easily. You must start
with a basic infrastructure, which would include
the database and some of the other tools for inte-
grating new capabilities. You can't simply take a
collection of tools, put them together, and call it
an environment.

The functionality of an environment can greatly
influence productivity. Obviously, you want an
environment to do as much as it can. If you have
an Ada unit that is recompiled and there are
dependent units that have to be recompiled as a
result, you don't want the environment only to
tell that you have to recompile these other units.
You want the whole process to be automated.

To date, the environments that we have been
looking at have not demonstrated full functional-
ity. There is much that is missing, particularly
in the areas of design and project management.
We feel that Ada environments have a long
way to go.

In our experience with user interfaces of these
environments, the command languages have not
been particularly friendly. They are based mostly
on 1970s technology for environments: they are
still command-oriented. Generally, you need
wizards to operate in these environments.

Ada has been proposed as a command lan-
guage for environments and I am not convinced
that is the correct answer. Ada was designed to
be read, not written, and command languages
should be written, and do not generally have to
be read. If Ada is used as a command language,
then the environment should provide a great
deal of help with the syntax.

The environments must have systems for inter-
active use, such as command completion, wild
carding, and abbreviations; items that we have
come to expect in operating systems. We have
found that both error messages and documenta-

tion vary a great deal in quality, and that many
error messages are not helpful. They do not iden-
tify the source of the error, resulting in cascading
error messages. These are things that we should
not encounter in the 1980s.

With respect to performance, one of the indica-
tors of maturity and stability of a technology is
the ratio between the best and the worst environ-
ments, and we are still seeing very high ratios
between the best and the worst, up to an order of
magnitude. I would expect that as the technology
matures, that figure would come down to the 30
to 50 percent range.

The performance of a system greatly affects
the style of development. If you have a simple
operation such as creating a library that takes
30 minutes, people are not going to create
many libraries. This is a problem in some
environments.

I am very skeptical about lines of code (LOC)
measurements because there are so many differ-
ent ways of measuring lines of code. Most vendors
are kind enough to eliminate comments and
eliminate blank lines when they talk about lines
of code speeds of Ada compilers, but some ven-
dors still use the number of lines on which Ada
appears as opposed to the number of Ada state-
ments. In a large number of sample programs,
this ratio is about two lines on which Ada appears
to one Ada statement. You must also take into
consideration what is being compiled: that
will have a great influence on the speed of a
compilation.

Incremental compilation and automation of
compilation are very important issues, and can
be more significant than raw compilation speed.
If you make a very small change to a large pro-
gram, and the environment can do that easily,
rather than compiling the entire unit, then you
are much better off. We are starting to see this in
some of the environments that are now coming
out.

66 • WEIDERMAN

A slow interactive system is equivalent to a
batch system. If you take more than 30 seconds
to do a particular task, the developer is going to
get tired of waiting, and will put that system
aside.

In terms of system interface, we found that the
layered approach can be costly in terms of per-
formance. Another problem with the layered
approach is that useful functions may be hidden
under this layer that you have created and they
cannot be accessed or are difficult to access.

In addition, I have seen no evidence yet that
the layered approach has met its objective of
providing portability. Integration is a potential
problem in both the layered approach to envi-
ronments as well as the incremental approach.
Again, we cannot simply take a series of tools.
The tools have to work well together. In order to
work well together, they have to know about the
underlying database, how the program is stored,
and how the data is stored. When you build an
environment from scratch, you have a better
chance of making things work well together than
if you start adding to an existing environment.

We have seen few attempts to use modern
workstations and graphics and the full capabili-
ties of modern hardware. This area seems to be
lagging behind by several years.

Finally, we have learned that environments
are very complex objects that are not only diffi-
cult to build, but are difficult to evaluate. We
have spent more time than we expected on our
evaluations. Validation and design reviews are
no guarantee that the system is going to have to
have high quality. There are many blatant errors
and poor performance in some compilers and
environments.

The only way to really get an appreciation for
the quality of an environment is to use it in signif-
icant ways. That is what we have attempted to
do in our evaluations.

I think that you could probably say that the
environments that we have today for doing Ada
do not have all of the qualities that I have men-
tioned. I have yet to find an environment that
includes production quality and comprehensive
functionality and is user friendly as well. I think
we are making good progress. I think that much
more prototyping has to be done and that we
still have to work very hard on defining our re-
quirements for environments. I believe that the
incremental environments constitute the best
approach at the present time, although the
approach of creating an Ada machine looks
very promising.

WEIDERMAN • 67

Session 5
Should There Be a New Life Cycle?

Moderator: Christine M. Anderson

Dennis D. Doe
Manager of Engineering Software and Artificial Intelligence
Boeing Aerospace Company

In 1981, Boeing started an initiative to improve
our ability to develop embedded mission-
critical software. We put together a software

standard or methodology at about the same time
as the release of DOD-STD-2167.

We released our software standard in late 1982.
and then prepared guidebooks to help implement
that standard. In parallel with that, we set up a
corporate-wide training program and started a
project called the Boeing Automated Software
Engineering System (BASE), to automate the
process we had defined. The Boeing Software
Standard (BSWS) 1000, is very similar to DOD-
STD-2167 but also gets into the areas of manage-
ment and operation and maintenance, and has
product standards which are equivalent to the
24 Data Item Descriptions (DIDs). Our guidebooks
describe how to implement the standard and
how to tailor it. As with DOD-STD-2167, we use
the software development plan primarily for
deciding how we will tailor the standard for a
given project.

We have a fairly extensive training program
that goes along with the standard, not only for
the software engineers and the software man-
agers, but also for the interfacing people and the
program managers who helped us implement
the standard. We also conducted a requirements
review to determine how to automate the process,
and we developed a master plan to incorporate
the automated software implementation system.
The life cycle in our standard is very compatible
with DOD-STD-2167, and we are in the process
of changing it to become completely compatible
with DOD-STD-2167.

BASE is set up to handle several aspects of the
program, including management, technical devel-

opment, maintenance, and automated documen-
tation. Through evolutionary releases we get
near-term benefits to our programs.

BASE is a loosely coupled local area network
of heterogeneous processors with a variety of
operating systems. The software tools in BASE
share a common user interface and exchange
data through a common database. The basic
system contains a mixture of workstations, file-
servers, PCs, and terminals. Different projects
implement different subsets of BASE hardware
and software and consequently get different
degrees of capability. For instance, on our Peace
Shield program, the implementation of BASE is
VAX/VMS with IBM PCs and some terminals.
Peace Shield doesn't get the advantage of much
of our automated software documentation pro-
cess, but does get a lot of tools.

As an example, we have a requirement trace-
ability tool on the VAX which we used to do a
requirements analysis on Peace Shield. We found
that there were about 800 unallocated require-
ments; if we had let them go until the test phase,
they would have been very expensive to fix.
These tools are starting to pay off for us.

Our approach was to concentrate on the front
end and the integration and test end of the life
cycle, where we think it has the most benefit.
We are also working to get Ada integrated into
the system; Ada is available on the VAX, but
we don't have all of the cross-compilers that
we need.

We are using Apple Macintoshes right now for
our managers, networked together with mail.
Our secretaries and many of our engineers are

DOE • 71

using Macintoshes as well. We are starting to use
some of the tools provided by Apple to do system
engineering work: functional flow diagrams,
operating sequence diagrams, and so forth.

The concept is one of a common user interface
and database approach. We have heterogeneous
computers on this system, but we have a data-
base structure setup where, for instance, an
automated documentation system can get into
the database, pick up the requirements data or
whatever it needs to do, and automatically build
the documents. The automated documentation
system uses the model documents to automati-
cally build specs and the design documents and
so on.

Our approach is to use commercially available
tools whenever possible. This is not working out
as well as we would like. The problem is that
since we don't own these tools, we run into a
variety of licensing problems when we want to
distribute the software within Boeing.

For our requirements analysis work, we are
using commercially available tools and/or sys-
tems, integrating those tools through a database
and providing a common user interface at the
workstation. Our prime workstation is the Apollo
right now, but because of the cost we are trying
to integrate more PCs and Macintoshes.

We are concentrating on the requirements and
design phase of BASE now and doing some work
on the test end. The work that we are doing for
AWACS is a set of tools for automatic system
verification. Configuration management, a big
part of our system, includes managing the docu-
mentation and managing the code. We intend to
bring products from the Software Productivity
Consortium (SPC) into BASE and then transfer
those out into our different software activities.

I will now give you a brief overview of what is
going on in the Software Productivity Consor-
tium. We spent the better part of a year putting
together a technical development plan and a
business plan. We have a five-year plan laid out
with the intent to have additional five-year incre-
ments as we make progress.

Originally, I thought we would have been up
and running by now, but it takes a long time to
bring 14 companies together. We are just getting
started on the staffing process. The chief execu-
tive officer has been selected. The next step is to
choose a chief technical officer and then start
bringing in people from the companies, from
direct hire and from the universities.

Our technical plan has three research thrusts
to improve software productivity. These areas
are reusable software, prototyping, and the use
of knowledge-based software engineering to
improve the software life cycle. We hope to get
at least an order of magnitude improvement in
software productivity. Within the software system
engineering portion, we intend to measure our
improvements in productivity.

We are a little more near-term oriented than
things like the Microelectronics and Computer
Technology Corporation (MCC). The companies
are signing up for a three-year term in the consor-
tium, and have to give a one-year advance warn-
ing if they are planning to get out. We felt we
had to have some products in the two-year time
frame for them to base their decision on, and we
felt that we could provide some tools and method-
ology in the area of reusable software. Prototyp-
ing is a little bit further out, and knowledge
engineering is a little bit further out than that.
We also plan to look at some future programs.

The system engineering and technology trans-
fer groups within the SPC are the interface be-
tween government, industry, and university
work, and are intended to bring that technology
into the consortium and get it into the program
areas. They also interface with the member com-
panies to transfer the products into the member
company environment.

I chair a committee that sits between the mem-
ber companies and the system engineering group
that works the needs of the companies back into
the consortium. Our needs and reports are re-
viewed by that committee before they go out to

72 • DOE

the member companies, so we are very hopeful
that with our plan we can accelerate the technol-
ogy transfer quite rapidly. By putting some of
the better people from our companies into the
system engineering area, we are hopeful that we
can also accelerate the technology transfer area.
We are putting together a software development
environment at the consortium, and the member
companies that emulate that environment will
probably stand the best chance of accelerating
their technology transfer as well.

I believe that the existing life cycle has some
shortcomings, and I have some suggestions. The
existing life cycle is very rigid. We get into a lot
of trouble in trying to define our detailed require-
ments and cast them in concrete before we really
have had enough interaction with our customers.
We need to do more to provide a support mecha-
nism for prototyping and the evolutionary re-
quirements changes. I don't think the life cycle
addresses the operations and maintenance part
of the system, and it certainly needs to be flexible
enough to support projects of different sizes and
types.

I read a paper by Barry Boehm that recom-
mends a spiral life cycle, which has a lot of good
features. I'm not sure it's the ultimate answer,
but it seems to be heading in the right direction.
We have got to support rapid prototyping some-
how in order to get our requirements defined
and understood by our customers before we go
through our PDR and cast our design require-
ments in concrete.

In summary, I think that DOD-STD-2167 is a
good methodology as long as you use a set of
guidebooks and do some tailoring to make it fit
your given projects. I think for right now that we
have at least a foundation to begin from. We can
get significant productivity improvement using
that life cycle and improving our automation and
so on, but if we are going to get real improvement
in productivity we have to take a new look at it.
We are doing this in the Software Productivity
Consortium.

DOE • 73

Edward H. Bersoff
President
BTG, Inc.

The recent report to the President by the
President's Blue Ribbon Commission on
Defense Management discusses increased

use of off-the-shelf software, reuse of software,
adapting or building new systems only when
current systems are clearly inadequate, and also
emphasizes the use of prototyping in the develop-
ment of systems. What it doesn't tell us is exactly
how to do that.

The new issue of DOD Directive Number 5000.1
talks about looking at using systems that cur-
rently exist, modifying things that exist, and
minimizing the time it takes to build a system
rather than looking to the frontiers of technology.
Minimizing time is a basic emphasis that reusable
software and prototyping deal with. Prototyping
is again mentioned in the new issue of 5000.1. It
also talks about changing things with respect to
the standards, and adding test phases or test
articles or omitting phases — hardly a bureau-
cratic view of building systems. It seems to have
been written out of frustration with the current
process.

SECNAV Instruction 4210.6, Acquisition Policy,
published 20 November 1985, talks about mak-
ing changes only sparingly — don't over specify,
avoid unnecessary requirements, use off-the-
shelf equipment, and reuse CPCIs or CSCIs
wherever possible.

The problem is not so much what we ought to
do, but how we ought to do it. How will prototyp-
ing and reusable software technologies affect the
life cycle in the next year or two? How does the
artificial intelligence systems development pro-
cess affect the life cycle? Artificial intelligence
developers seem to be the last haven for people

who don't want to deal with the standards and
rigor of system development. I think the prototyp-
ing and software communities are coming to the
realization that current development standards
may be counterproductive. Embedded in that
issue is the question of whether we should be
specifying the process of software development
or the products of the software development. My
bias is in the area of product specifications as
opposed to process specifications.

If there does need to be a new life cycle, what
does it look like and what new standards, if any,
need to be developed to support it? We deal with
two different kinds of problems in the systems
we build. One is the deterministic problem, where
there is a sensor input, a response by a computer,
and an output process. In such a system, the
inputs are well defined and the outputs are fairly
well defined. There is also very little human/
machine interaction. A weapons system would
fit in this category.

The non-deterministic problems, however, are
where there is a more intimate human/machine
interaction, where the experiences of the user
have an impact on how the system gets built.
While weapons systems fit neatly into the first
case, command, control, communications, and
intelligence (C3I) systems fit into the second. If
you look at the case studies that have been pre-
sented, the communication system that fits nicely
as a deterministic kind of system had very few
Software Problem Reports written against it and
seemed to be well under control. But the C3I
system that was talked about had 7,500 SPRs
during development.

74 • BERSOFF

I believe the reason for this is because we don't
really know what the problem is at the outset
and when we get to the end, the problem has
changed, so the system doesn't match the prob-
lem anymore. We deal with hard questions in
the non-deterministic kind of systems we build.
What does this aggregation of forces mean? What
happened the last time this particular condition
was seen?

The formal life cycle mechanism and DOD-
STD-2167 apply very nicely to the first class of
problems and less nicely to the second class. I
think that much of our problem stems from the
application of the rigor of the standards that we
currently use in the second class of problems.

Everyone who talks about software engineering
speaks of the stages of the development process,
from the test planning and the interaction of that
activity with the development process, to the
delivery and the production/deployment of the
system. There is a lot of controversy as to when
the life cycle is finished and the characteristics of
the operation and maintenance phase of the life
cycle. I believe that the operation and mainte-
nance phase of the life cycle is really the life
cycle itself; there is no such thing as mainte-
nance. It's just an adaptation and evolution of
the system itself.

An Army general at an Armed Forces Commu-
nications and Electronics Association (AFCEA)
convention mentioned that the project he was
working on had a development cycle of 14 years.
That is not unusual, but the problem changes
over time, and the best we can do is to get to
a point where we are not totally mismatched
between the problem state and the solution state.

What does that look like in terms of what is
really going on, especially in non-deterministic
kinds of problems? A need for a system is first
recognized (Figure 1). A development process is
then begun, but by the time the first article deliv-
ery is made at t,, the user needs have changed,
and the first article doesn't even satisfy the
requirements that were in place at the outset of
the development process.

Impact of the Traditional Life Cycle

C
O

Ö c
3

There are some metrics we can look at as to
the goodness of the product that we have deliv-
ered relative to user needs, because that is really
where the productivity rests, with how well we
satisfy user need. We want to look at the good-
ness of the solution relative to the problem.

Adaptability is one of the measures of the sys-
tem, and is represented by the slope of the line
that runs from t, to t3. The timeliness of the
system is the time from t, back to to, which is
how far away in time we are from the real prob-
lem at any given instant. The skewness is the
measure in solution space from the problem. The
vertical axis would define the skewness of the
solution set.

We adapt a system to a certain point, then
realize that the system can no longer be adapted.
It ends its maintenance phase. The bugs are too
frequent and we have a problem modifying the
system, so we end up freezing the system and
starting a new system, going through the same
process over again. But the problem is that we

BERSOFF • 75

are always behind. We need to do something
about this, and I think technology can help us to
combat our enemy in this whole process, the
enemy being time and an understanding of
the problem.

One of the most fruitful technologies we can
apply is prototyping. Prototyping is a partial
implementation of a system used to learn more
about a problem or possible solutions to the prob-
lem. In the C3I or non-deterministic environment,
the major benefit of prototyping is to learn more
about the problem as opposed to learning more
about the solution to the problem.

There are several approaches to prototyping,
and we need to look at them differently. The
simulation or traditional prototyping that has
been talked about is either the "throwaway" or
"foreign host" approach. The "throwaway"
approach is a prototype software system that is
constructed on the actual host hardware. This
software is usually discarded after the desired
knowledge is gained. The "foreign host" approach
is a prototype software system that is constructed
on different hardware than that which will be
used in the actual implementation in order to
learn more about the problem or its solution.
The actual hardware is often simulated on the
prototype hardware. These are very useful in
learning more about solutions and, in some cases,
problems. But the real benefit lies in the evolvable
prototype, which can grow with user needs.

Prototyping does not come free. Often we use
prototyping as an excuse for bad design or bad
implementation, so we can justify the fact that a
system doesn't work by calling it a prototype. In
some cases, however, the government likes the
prototype and wants to make it production qual-
ity. It is generally a mistake to begin with a proto-
type because it can't necessarily be converted
into a production-quality system.

The speed of prototyping doesn't necessarily
lend itself to the full rigors of MIL specs and MIL
standards, for very good reasons. The DOD wants
full life cycle documentation for maintainability,

adaptability, and for tracking progress, and 2167
and 2168 embody those ideas. "Throwaway"
and "foreign host" prototypes are useful in the
early phase or the requirements phase, and
sometimes we write code before we finish
design in the "throwaway" mode.

Evolvable prototypes, where the intention is to
put the quality in after the problem is understood,
are discouraged and properly so because you
can't build the attributes of quality in after the
fact. There doesn't seem to be a mechanism to
support the built-in quality approach to evolvable
prototyping. That is a major shortcoming in the
current life cycle model with the current stan-
dards that we have.

Reusable software has been defined by the
Software Productivity Consortium as software
solutions applied by developers for differing appli-
cations within an application domain, such that
little or no manual modifications are required.
The utility of reusable software is that you get
mature solutions and shorter development cycles.
Remember, our big enemy is time. All of the
prototyping approaches can benefit from reusing
software that already exists. Software is com-
prised of specifications, designs, data, code, test
cases and test data, and documentation. I believe
that all of these components can be reused.

There are several approaches to reusable soft-
ware. In the first case, a library of software com-
ponents is built, and a system is composed in
the library by gluing together those components.
Right away you see that there is a problem in
knowing what is in the library and what its attri-
butes are. There is a whole set of metrics and
standards that are absolutely necessary to define
what is in the library and to specify what has
been pulled out of the library.

Software synthesis would allow one to take a
requirement specification which is correct and
put it into a tool, and an automatically composed
set of modules from the library would be pro-

76 • BERSOFF

duced. This approach is obviously much more
difficult to implement than the library method.

Software adaptation would be a process by
which a piece of software would be adapted on
its way out of the library to fit particular needs.
An example of this would be a piece of software
in the library that was written in the wrong lan-
guage or written against the wrong specification
or standard. If you want to change the precision
or the process, you would specify those changes
to the system, and the library tool would pull the
software out and make the modification for you.
Obviously, this is a few years away.

One of the major reasons procuring agencies
don't require more reusable software is that they
believe there's a specification compromise, that
the system is not going to do quite what they
wanted it to do, therefore, the reusable software
component isn't good enough. If we sometimes
over-specify systems, it may seem that the reus-
able components are not useful, but if we compro-
mise a little bit, we can make good use of things
that are in the library and possibly get a system
that doesn't quite meet all of our needs, but we
can get it sooner.

Another reason for not using the reusable soft-
ware is standards mismatch. The software was
built in accordance with MIL-STD-490 and we
want it in accordance with DOD-STD-2167.1
believe that the big factor is uncertainty, or lack
of control. What is really in this piece of software
that we are pulling off the shelf? The contractor
who is using reusable software has an excuse for
things not working because he was forced to use
a reusable component.

There are also reasons for the developer to
seek to avoid reuse of software. Lack of control is
also a factor for the contractor community. Labor
is sales, and if you reuse software, you don't get
as many sales. Profit only goes so far. Perhaps it
is possible to "incentivize" the use of reusable
software through additional profit, but profit is
not the same as people and overhead and G&A,
and you lose a lot of that if you reuse software.

This is another negative aspect to the reuse of
software.

Having talked about what the technology is in
reusable software and prototyping, let's look at
their impact on the life cycle. The "throwaway"
or "foreign host" prototypes, in my view, have
little impact on the life cycle. Prototypes built
in parallel with the requirements analysis and
design and even in parallel with the implemen-
tation help you do a better job, but they won't
necessarily change the basic structure of the
life cycle.

However, with evolutionary prototypes, if you
have to finish the system development before
you learn what needs to be learned from the
prototyping, you get a life cycle that is iterative.
In some cases, you can learn something about
the problem earlier and during the requirements
phase you will get one life cycle going and then
start another.

When you have multiple prototypes, many
things are being developed simultaneously, and
this is a potential configuration management
nightmare because you have multiple baselines
at the same time. However, the good news is that
you are higher on the satisfaction scale. Perhaps
you get a little bit more timeliness and system
deliveries come a little bit earlier, but the big
benefit is that you learn more and, therefore,
solve more when you build a system.

The evolutionary prototype, in my view, has
the biggest payoff because you get some things
very early, potentially build in a mechanism for
evolution and adaptability, and then rebuild later
on. The number of problems you haven't satisfied
is much smaller.

With respect to reusable software, the major
benefit seems to be earlier solutions to the prob-
lem. The life cycle structure or your solution
structure looks about the same, but answers
come out earlier.

The answer to our problem takes the life cycle
that we understand and, by increasing phases in

BERSOFF • 77

scope and shrinking things, tailors that life cycle ticular procurement. Then we should only buy
by making the requirements phase very long, so what we really need and "incentivize" people
that we have many documents or things that we to exhibit the behavior that we want them to
want to look at in that period. We then specify exhibit,
what the products are that we are looking for,
and adapt the products of the process to a par-

78 • BERSOFF

Session 6
Are New Business Practices Needed?

Moderator: Catherine M. Burzik

Pamela Samuelson
Principal Investigator, Software Licensing Project
Software Engineering Institute

Department of Defense (DOD) people as well
as industry people tend to agree that the
existing DOD regulations on data rights,

at least as they apply to software, are too compli-
cated, too long, too ambiguous, not well tailored
to the kind of technology that software repre-
sents, and are unnecessarily divergent from
standard commercial practices. I think new prac-
tices in this area are needed if the Defense Depart-
ment is going to be able to get the best software
technology at a reasonable price and to acquire
an appropriate set of rights in software.

About a year and a half ago I was blissfully
ignorant of the Defense Department's data rights
regulations. I was teaching at law school and
studying intellectual property law affecting soft-
ware. I became interested in the kinds of prob-
lems that the largest buyer of software in the
world, namely the Defense Department, would
have in acquiring software.

I started my investigation of software acqui-
sition, as part of the Software Engineering Insti-
tute (SEI) contract, by interviewing people
involved in the software acquisition licensing
and maintenance litigation business: contract
officers, procurement personnel, logistics people,
lawyers, DOD people from all the services and
from the Office of the Secretary of Defense (OSD),
and some people that DOD people had recom-
mended. About 120 interviews later, my staff
and I went through the regulations and statutes,
did some other kinds of legal research, and put
together a report. The report examines the range
of data rights problems affecting software that
were raised by DOD people.

Many people that I interviewed were having
trouble understanding what the standard data

rights clause that governs DOD's software acqui-
sitions says and means. Many had formed an
abstract notion about the meaning of the clause,
which was that if the government had funded
the software, the government would have unlim-
ited rights in software, and if the software was
privately funded, then the government would
have limited rights to the software documentation
because that is considered technical data under
the DOD policy, and restricted rights to machine-
readable code which is defined as software under
the regulations (Limited rights are government-
wide, whereas restricted rights are site-restricted).
Others thought that if the government paid for it,
the government owned the software, and if pri-
vate industry paid for it, industry owned it.

That notion is not entirely accurate. Many
people thought that "unlimited rights" was a
kind of ownership interest. I looked at the defini-
tion of unlimited right in the regulations, and it
doesn't say anything at all about ownership. It
talks about rights to use, duplicate, and disclose,
which are very important, but in this area owner-
ship rights tend to be defined in terms of rights
to exclude, to control what others can do with the
software, not what you yourself can do with it.

Since there is nothing about a right to exclude
in the definition of unlimited rights, that was
some evidence that maybe unlimited rights wasn't
an ownership interest. If the Defense Department
wants to own and control software, to have those
exclusive rights, it's supposed to use the "special
works" clause. That clause purports to give the
government a direct ownership interest in soft-
ware as if it were a work made for hire.

SAMUELSON • 81

There are a couple of problems with the DOD
special works clause. It conflicts with the copy-
right law in two respects. One is that software is
not a category of work that qualifies as a specially
commissioned work for hire.

Secondly, and more importantly, the govern-
ment is prohibited from taking a direct copyright
ownership under Section 105 of the copyright
law. It may be that the effect of the DOD special
works clause is to put the software in the public
domain, which is what the Copyright Office
seems to think. When it's in the public domain,
anyone can do anything they want with it.

The proposed Federal Acquisition Regulation
(FAR) and the NASA regulations include a special
works provision that might work to give the
government ownership interest. In some circum-
stances, they would permit the government to
require the contractor to obtain and assign a
copyright to the government. If the government
has an ownership interest in software intellectual
property, that would give the government a more
extensive set of rights than if the software is in
the public domain, because the government
would then have the right to exclude others
as to the software.

The definition of unlimited rights in the DOD
clause includes the right to use, duplicate, and
disclose software, but there is no reference to a
right to make derivative works. With respect to
software, derivative works are particularly impor-
tant. Modifying software, enhancing it, translat-
ing it from one language to another, rehosting it,
and retargeting it all depend on being able to
make derivative works.

Some people in the DOD say that derivative
works must be implicitly included in the defini-
tion of unlimited rights, but it's so easy to put a
reference to derivative works into the clause if it
is what you really want. The proposed FAR
defines unlimited rights to include the making of
derivative works, which really makes a lot of
sense for software.

Another concern about the data rights clause
as it's presently drafted is that there is a serious

ambiguity in the regulations that has to do with
the effect of copyrighting software on the extent
of the government's rights. The standard data
rights clause allows the contractor to copyright
any software developed at public expense unless
the special works clause is used. In that same
clause, it allows or requires the contractor to give
to the government a license to use copyrighted
software and do various other things with it for
government purposes.

It may be that the effect of copyrighting a piece
of software cuts back the government's rights
from unlimited rights to "government-purposes"
rights. However, the regulations are unclear on
this, and many people seem quite ignorant of it.
An ambiguity of this sort can give rise to some
serious problems, particularly in the software area.

Let me give you an example of a situation in
which it matters whether or not the government
has true "unlimited rights" or only government-
purpose rights. Suppose that the government
lets a contract for the development of a software
environment to Contractor A, who develops it.
The government then contracts with Contractor
B to make a derivative program based on that
software, and Contractor B wants not only to
deliver that rehosted environment to the govern-
ment, but also to be able to sell it in the commer-
cial arena. If Contractor A copyrights the software
that is initially delivered to the government, that
may cut back the government's right to a govern-
ment-purpose license, in which case Contractor
B's commercial distribution might run afoul of
Contractor A's rights. The government really
doesn't have the power to give a broader set of
rights to Contractor B than they were able to get
from Contractor A, especially since derivative
software for a commercial market is a very likely
possibility. If the government had true unlimited
rights, it could authorize Contractor B to sell its
derivative of Contractor A's software in the com-
mercial market with no liability to Contractor A.
It seems to me that this ambiguity is worth wor-
rying about.

82 • SAMUELSON

If software is privately funded, the abstraction
is that the government will have limited rights to
the documentation and restricted rights to the
machine-readable version of the program. This is
not entirely true. There are actually two different
kinds of restricted rights, one pertaining to com-
mercial software and one pertaining to "other
than commercial" software or to commercial
software that the owner decides to have treated
as "other than commercial" software. Those two
sets of restricted rights are very similar, but
they're not identical. That abstraction is also not
true in that the documentation is subjected to
restricted rights treatment when the software is
commercial and its vendor elects to have it
treated as commercial software. Not all software
documentation is data to which the government
has limited rights.

When a commercial software vendor decides to
have the software treated as commercial software,
the documentation can be subjected to the same
restricted rights rather than limited rights. From
the industry standpoint it is very desirable to
have a site restriction as to documentation
instead of government-wide rights to copy and
disclose. This is much closer to the standard
commercial practice of treating software and
documentation as subject to either the same set
of rights or even more restrictive rights as the
documentation. The DOD policy tends to reverse
that and treat documentation to a much wider
set of rights. This is one respect in which it
unnecessarily diverges from standard com-
mercial practices.

There are two ways in which things that are
privately developed and which seem to qualify
for limited or restricted rights treatment can be
arguably subject to unlimited rights treatment.
My report talks about them at some length.

There are three kinds of flexibilities in the
regulations. The government can negotiate up
from limited rights treatment in privately devel-
oped software. It can also negotiate up from
restricted rights to have the software competi-

tively maintained and give out the documentation
to someone else. It's also possible to negotiate up
from restricted rights for other than commercial
software or a commercial software manufacturer
whose vendor decided to have it treated as other
than commercial software. There is also the
option for the commercial software person to
opt into the other than commercial software
possibility.

However, there is no flexibility to negotiate
down, so that it's not possible, if the software is
publicly funded, to negotiate for less than unlim-
ited rights without getting a deviation, and it's
not possible to go beneath the standard floor of
the four restricted rights in code or the standard
set of limited rights in documentation. The regu-
lations may not give the government sufficient
flexibility at times when it may be necessary, in
order to get really good technology. It may some-
times be worthwhile to negotiate away the gov-
ernment's right to modify software in order, for
example, to get a warranty on the software.

The proposed FAR has a simpler policy. It pro-
vides that, if software is privately funded, both
documentation and machine-readable code are
subjected to restricted rights treatment, so it
avoids all that complexity that is associated with
the DOD policy. It also clarifies that the govern-
ment gets unlimited rights except where the
software is copyrighted, in which case it gets
government-purpose rights. Perhaps it would be
in the Defense Department's best interest to
adopt this policy and maybe supplement it to the
extent necessary to fulfill special mission needs.

It is possible under the FAR, in situations where
both government and industry funds go into a
project, for the government to take less than
unlimited rights. I think this creates a very signif-
icant incentive to get good technology to the
government. It also allows the government in
some circumstances to take less than the stan-
dard rights, for example, to give up the right to
modify in order to get a warranty.

SAMUELSON • 83

Maj. Gen. Henry B. Stelling (USAF/FM)

Vice President
Rockwell International

I have a two-part speech. The first part will
deal with some software activities at Rockwell
International. The second part deals with a

1983 Armed Forces Communications and Elec-
tronics Association (AFCEA) study of C3 system
acquisition in which I participated. I will review
the evolutionary acquisition approach that the
study recommended and I will address some
of the controversy surrounding evolutionary
acquisition.

In a recent review of the software situation at
Rockwell, a consultant found that senior execu-
tives were frustrated with software developments.
It was suggested that one way to alleviate this
frustration would be to conduct training pro-
grams. This would enable executives to at least
ask the right technical questions rather than
accept the software manager's refrain of "Trust
me!"

Our systems at Rockwell have tough require-
ments, and I think that this is true for all of us.
These requirements include distributed multiple
processors, high availability and reliability goals,
and real-time, multiple task environments. Like
the rest of industry, our projects are budget-
limited and schedule-sensitive. Software is con-
suming more and more of the budget and always
seems to be late.

I believe that many of these problems are really
caused by both the zeal of the customers to get
approval for programs that they believe are in
the best interest of national security, and by the
problems that industry faces in a competitive
environment. While management metrics are
desirable, when we do identify problems in our
programs we have little flexibility to correct the
schedule and cost imbalances.

We can address these problems by borrowing
from the experience of the rest of industry. For
instance, during testing of the Bl bomber, we
found that the use of computers to assist in diag-
nosing the problems during aircraft testing is
amenable to expert systems. In the integrated
diagnostics approach, we borrowed from the
expert system approach to give us a much better
capability of defining and locating problems in
the Bl system. We have the expertise. We use
knowledge engineers to come up with a knowl-
edge base, giving ourselves a capability to field
an expert system. We use high-order languages,
including Ada.

There has been some positive progress over
the last decade. Software has been elevated to a
level of greater importance. There is a big push
to establish a discipline for software in the areas
of planning, standardization, communications,
and management. We are also using technology
to improve our handling of critical missions.

Now I'd like to talk about the evolutionary
acquisition approach that was defined in the
1982 AFCEA Command and Control (C2) System
Acquisition Study. I think it is important when
we talk about C3I systems to recognize that
we are talking about a set of systems. There
shouldn't be any problem in defining hardware
and software requirements for sensors, communi-
cations systems, and radios for C3I. We have a
unique situation when we deal with battle man-
agement of forces, where there is a requirement
to support military commanders facing evolving
threats. We must accept that battle management
requirements will change frequently in the face

84 • STELLING

of changing threats and Joint Commanders'
preferences. In such a situation, agreement on
total system requirements can be best achieved
— and perhaps can only be achieved — by a
building block approach where we build and test
the system incrementally.

The evolutionary acquisition concept mandates
user involvement in both development and test-
ing as the best way to reach agreement on
requirements. It does represent a departure from
the Air Force Systems Command's "home base"
concept in which the Program Office prefers to
stay at Hanscom Air Force Base, in the case of
ESD. where all of its support functions are
located. However, user involvement is best
accomplished by collocation of the System Pro-
gram Office with the user. It does involve the
user in a role that he may not be equipped to
handle. In the case of NORAD, they did have a
software capability and ESD did set up a team
approach to the development of the NORAD
Cheyenne Mountain Improvement Program.

The evolutionary approach also stresses the
Services' formal requirements validation process.
If the evolutionary approach is to be successful,
it cannot have long delays in starting successive
increments that would be imposed by current
procedures. Independent testers responsible for
validating a system under development as an
evolutionary acquisition may feel compromised
by the incremental approach. User involvement
in testing and requirement generation for the
next system increment is not part of the current
independent tester concept.

Budgeting for evolutionary acquisition is partic-
ularly difficult. Since we are talking about evolv-
ing requirements, we cannot state requirements
for a total system in other than a representative
fashion. What the AFCEA study proposed is that
a representative system be used as the basis for
budgeting, with the developer required to design
within the approved budget. However, to do this
requires a system architecture that can accom-
modate change.

Experience with evolutionary acquisition, such
as RADC's involvement with Constant Watch,
and ESD's involvement with OASIS and the
NORAD Cheyenne Mountain Complex, indicates
that contracting should not be a problem. Since
each increment delivered is a stand-alone pro-
gram, it can be competed if competition is in the
best interest of the government. If there is a feel-
ing in some circles in the Department of Defense
that each phase of a phased program must be
competed, this misunderstanding could be elimi-
nated by assuring that the differences between
conventional and evolutionary acquisitions are
clearly understood. Contracting will also be easier
if software is documented so it can be transferred
to a new development team and reused.

In conclusion, I believe that evolutionary acqui-
sition is a business practice that is needed for
command and control systems.

STELLING • 85

Barry W. Boehm
Chief Engineer, Software System Division
TRW Defense Systems Group

Currently, software cost estimation models
are at best accurate to within 20 percent
of the actual real costs about 70 percent of

the time. One of the reasons they are not any
better is that the data to which they are cali-
brated isn't any better. Furthermore, I think the
situation is going to get worse before it gets better
because of the uncertain effect of such new tech-
nologies as rapid prototyping, Very High Level
Languages, and Ada.

We need a consistent set of counting rules for
Ada programs. Lines of Ada code are put through
a "pretty printer" and suddenly you have a pro-
gram that is twice as large. We need to define
and collect data very carefully. One exception to
all this pessimism is the ESD Software Manage-
ment Metrics, which I think are going to lead to
some very valuable data in the process of helping
ESD manage its software projects.

We need better sizing primitives. Again, we all
use lines of code because we haven't found any-
thing better. We have tried function points; they
work pretty well on small-to-medium business
applications, but they do not work very well on
real-time or people-intensive projects.

One of the things that I think was good about
the STARS Business Practices Workshop was
that it recommended that the Department of
Defense (DOD) not standardize on a single cost
model. That would freeze technology and it would
reduce people's options to calibrate and to get a
little bit of parallel triangulation on the problem
by using more than one way of costing.

The cost models that are currently around are
hard to adapt to new technology. Some of them
are pretty good at addressing reusable compo-
nents. Some of them are just barely getting data

that provides some idea of what Ada will do to
software costs. Several models are doing pretty
well on incremental development. Hardly any of
them do very well at costing the impact of using
fourth-generation languages or prototyping, either
on the cost or the schedule involved in a software
development project.

I think the most important thing you can do to
get a better cost estimate is to better define the
software product that you are going to build. A
couple of years ago I ran an experiment where
seven teams of people built essentially the same
product with the same requirements. At the end
of this process, the seven teams produced soft-
ware in the same elapsed time, but the number
of man-hours it took varied by a factor of three.
The same inputs and the same outputs were
required. One of the requirements was to build a
user-friendly interactive interface and a single-
user file system. The way people interpreted
those requirements really gave you the factor
of three in how expensive this was.

Figure 1 is based on a curve from my book,
"Software Engineering Economics," with elabora-
tion based on data collected since the book was
published. As you proceed through the life cycle
and define a concept of operation, a requirements
specification, and a design specification, you
reduce the variance in the cost estimates. If you
are estimating before you have a concept of oper-
ation, you haven't pinned down the classes of
people and data sources you are supporting, and
it shouldn't be surprising that your cost estimates
may be off by a factor of two to four in either
direction. As you get a concept of operation

86 • BOEHM

Software Cost Estimation Accuracy vs. Phase

EXAMPLE SOURCES OF UNCERTAINTY, MAN-MACHINE INTERFACE SOFTWARE:

L±J

O
Z
<
h-
cn
O
CJ
LU
>

LU

4x r

2x -

1.5x

1.25x

0.5x

0.25x

MILESTONES:

Classes of people,
kdata sources

Ao support

_L

Query types,
data loads,
smart-terminal
trade-offs,
response times Internal data

structure,
buffer-handling
techniques

Detailed
scheduling
algorithms,
error handling

Programmer
understanding
of specification

Concept of
Operation

Rqts.
Spec.

Product
Design
Spec.

Detail
Design
Spec.

Accepted
Software

PHASES:
Feasibility Plans and

Requirements
Product
Design

Detail
Design

Development
and Test

Figure 1: Seven Experimental Programs with the Same Requirements

pinned down, the variance reduces, but at the
time of ESD proposals, many other factors that
you haven't pinned down still give you a wide
source of variation.

In the same experiment, I counted the number
of lines of code in each one of these products and
found a similar variation: one program had 1,300
instructions, another had 4,600 instructions, and
the others were spread in between.

There was one interesting difference that
accounted for a lot of the variation in the size
and cost. Basically, the seven teams all built
programs for COCOMO cost estimation models,

and at the beginning of this activity everybody
had been furnished the same inputs and outputs,
equations, and variables. Some of the other
things were very broadly specified: each team
was to produce a "user-friendly interface" and a
"single-user file system." However, they were all
equivalent in that they required user's manuals,
maintenance manuals, and well-commented
code. They all worked in the same environments.

Four of the teams used a specifying approach.
They wrote a requirement specification, they

BOEHM • 87

wrote a design specification, and then they wrote
the code. Three of the teams used a prototyping
approach. They built a prototype, exercised it,
and went on from there to develop the code.
Uniformly, the products that went through the
requirements and design specifications before
writing code had more instructions and were
more expensive in the number of man-hours
than the products that were developed using
prototyping. The average was about 40 percent
less code and 40 percent fewer man-hours for the
products that were prototyped.

At the end of the experiment, we had three
people exercise these programs and rate them on
a scale of 1 to 10 with respect to functionality,
robustness, ease of use, and ease of learning.
The prototyped products were about one point
lower in functionality and robustness and one
point higher in ease of use and ease of learning.
In general, they had less of what people called
"gold plating."

I asked the people involved to critique their
experience, and one of the specifiers said the big
problem with the specifying approach is that
"words are cheap." Basically, in doing reviews I
would give each team the same kind of feedback.
I would say some users would like to put the
inputs in backwards as well as forwards. The
specifiers would basically view that as one more
sentence in the specification, and would put it
in. The prototypers, on the other hand, had more
of a feel for how expensive that would be because
they understood how much breakage there was
and how much redesign was involved, so they
were much more reluctant to add to the
specification.

In using the document-driven DOD-STD-2167
approach to writing down the specifications
before you think about the implications, users
tend similarly to request all possible options as
part of requirements. All of these things get
embedded into the requirements and locked
into the contract.

On the other hand, prototyping wasn't the
universal winner. The specified products had
such nice things as interface specifications. The
prototypers basically started by dividing responsi-
bility for the software, and four weeks later they
would find they were building exactly the same
pieces of software that did the error checking on
the original and the modified inputs, and they
were doing it in incompatible ways. They had
specified the same variables with different names
and different structures and had trouble integrat-
ing them.

From these experiments and similar experi-
ences we have had at TRW, I came to the con-
clusion that a combination of prototyping and
specifying is the best approach, and the best
way to determine the mix is by using risk
considerations.

Frequently, on both sides of the acquisition
activity, we are involved in a situation where
RFPs come out at a point in Figure 1 where there
is still a factor of more than two for potential
variation in the size and cost of the software.
One of the things that I think forces us into adver-
sarial relationships is that we lock on to early
cost estimates. During the early planning phase
of the life cycle, somebody picks a cost and an
Initial Operating Capability (IOC) delivery date
and your delivery budgets and schedules are
fixed for all time. Then we compound the adver-
sarial relationship by coming up with a fixed
price contract at a point in time when we really
have no idea of what the product is that we are
building or what it will cost.

In a situation where our budgets or schedules
are unavoidably fixed, I think it's much better to
design to cost. There have been a number of
procurements that did this in a planned way.
The one that I remember the best was the TIPS
acquisition at SAMTEC where the requirements
specification had a letter in parentheses after
each itemized requirement indicating whether
the requirement was mandatory or optional, and
the bidders could do a proposed design to cost
and knew what the priorities of the contract were.

88 • BOEHM

Another problem that I think gets us into lose-
lose situations are early Best And Final Offers.
What does a Best And Final Offer mean if some
of the requirements say "user-friendly interface"
or "graceful degradation" or "99 percent reliabil-
ity" where reliability isn't defined? In reality,
they are absolutely baseless and lock us into
adversarial situations later on.

The best way to consider the cost variance
relationship is that it represents a source of pro-
gram risk, and the best way to address it is to
come up with a risk management plan that
addresses the major sources of variation. If we
want a user-friendly interface, we can plan to do
some prototyping that minimizes the risk. For
other sources of risk, we can plan to do more
mission modeling analysis, performance modeling
analysis, or break the job up into increments
where we may better understand what is in incre-
ment one. Then we can defer the cost/schedule/
performance/functionality trade-offs of the later
increments while we get more experience and
information.

Another really good approach is a competitive
concept definition phase. Basically it takes a
couple of competitors down to the PDR so we
will have a prototype, a B5 specification, software
defined down to the unit level, and cost estimates
that are within something about 25 percent of
what they would most logically be. In general,
we found in the defense software business that if
you get the numbers to within 25 percent of
what they should be, a good software manager
can turn them into a self-fulfilling prophecy.
Once you get things pretty firm they are more
predictable. If you are a little bit under, the man-
ager can usually motivate people to work a little
bit harder and bring the job in on cost and
schedule.

If you are going to do the risk management
plan, you must actually live up to it. One of the
things that we have been working on is the spiral
model (Figure 2), which is an attempt to come
up with a definition of the software process that
is more of a risk-driven process than a document-

driven process. One of the problems that we
have with the waterfall model or DOD-STD-2167
is that our less experienced people tend to look
at it and interpret it literally. If you ask them at
any given point what they are doing, they will
say, "I'm producing a document." Getting people
to focus on the risks that are implied by these
documents is very important.

Basically what the spiral model (Figure 2) says
is that what we really do, and I think really ought
to do in software, is not a linear progression
through a sequence of activities, but a cycle at
increasing level of detail through a number of
processes, the first of which is determining over-
all mission objectives at the beginning, overall
alternatives in terms of centralized or distributed
or federated architectures or things like that, and
constraints. As you go into more detail, the objec-
tives come down to individual objectives for a
little piece of code. Sometimes you will be able to
evaluate the alternatives precisely with respect
to the objectives and constraints, but generally
you will not. If not, you are in a risky situation,
so you should go through some kind of a risk
resolution activity.

If you don't know what the user interface
should be, the model says you ought to do some
prototyping. You may continue to do this in each
cycle and do the evolutionary development kind
of approach. In a situation where you know
enough about the job, you can go directly
through a concept of operation document, a
requirements specification, and a design speci-
fication, without having to spend extra time
and money on a prototype.

Thus, the waterfall model is a special case of
the spiral model, which you use if the pattern of
risks in your program say that is the best way to
go. Evolutionary development is another special
case that you use when the risks determine that
is the best way. The spiral model provides a con-
text in which you can use either the waterfall
evolutionary development, some other models.

BOEHM • 89

The Spiral Model

Determine objectives,
alternatives, constraints

Evaluate alternatives;
identify, resolve risks

Risk Analysis

Risk Analysis

Partition Rqts. plan
life cycle
plan

Develop-
ment Plan

ntegration
and Test

Plan next phases

Rl
A | type. Prototype2

Prototype3

Operational
Prototype

Concept of M
Operation Software

Rqts.

Requirements
Validation

Software
Product
Design

Detailed
Design r

Design Validation
and Verification

I
I Integra-

tion and
. Acceptance I Test

lmplemen-|Test
tation i V

Unit
Test

I Code

i
Develop, verify next-level product

Figure 2

or mixes of these, and use the risk considerations
to determine the best mix.

It's a little bit difficult today to go immediately
from DOD-STD-2167 to something completely
different and not completely worked out like the
spiral model. I think there are elaborations to
DOD-STD-2167 that involve the specific develop-
ment of a risk management plan, which can help
document the risk considerations and point the
acquisition in the right direction. If the risks say

we ought to prototype, let's build a plan that
gives us enough budget, schedule, and resources
to do the prototype and learn the lessons and
proceed from there.

Incorporating risk management plans for soft-
ware is something that we can start doing today.
I am encouraged that the upcoming revision of
AFR 800-14 includes a requirement for a software
risk management plan, and that Air Force pro-
grams are already employing them.

90 • BOEHM

Session 7
Where Do We Go from Here?

Moderator: Barry M. Horowitz

Barry M. Horowitz
Senior Vice President and General Manager
The MITRE Corporation

I would like to begin by talking about Ada.
A portion of this conference was devoted
to Ada, and I feel that a number of things are

necessary to move toward its integration into
systems. People who propose Ada talk about
portability, which implies independence from
operating systems and hardware.

We use off-the-shelf software as much as possi-
ble, and as a result, many of our systems use
commercial database management systems.
This has a direct impact on the degree of portabil-
ity that we have in a given application program.
While we may specify the use of Ada on pro-
grams, we don't have a specification for portabil-
ity that we use on programs. Clearly, the above
example illustrates that you won't get portability
by simply going ahead with Ada.

We talked about Ada and improving the life
cycle maintenance of systems, yet I know of no
programs, at least that ESD is directly coupled
to, where we are helping our maintainers to plan
their maintenance environment, not only for the
system we are delivering, but for the entire set of
systems they will be maintaining. They develop
many of their own systems as well as contracting
elsewhere.

MITRE and ESD try to do this on a case-by-
case basis as these problems emerge, but I think
the level of interest in Ada that has been directed
down from the Department of Defense (DOD) will
continue to rise as compilers become available.
However, we don't see the same interest in or
even recognition of the need to fund those addi-
tional things that will bring the benefits of Ada
into the community. I think that all of the people
who are interested in Ada and its benefits should
be raising the attention of the community of

management that funds and supports programs.
Maybe this is where the Software Engineering
Institute can help.

The second topic I want to talk about is the
relationship between the hardware, software,
and system engineering groups at companies. I
have a unique opportunity in managing MITRE's
activities — we work on over 100 Air Force pro-
grams, so I see a wide range of companies and
how they do business.

My view of the world is that in the command
and control (C2) areas, we are in pretty good
shape. The hardware bases are better, and we
are using commercial operating systems and
database management systems. The concepts for
C2 have not changed radically in the last period
of time. As a result, there is an experience base
that exists in companies. While there are many
software development problems, they are caused
primarily by a lack of capacity. However, I think
we are going to enter into the next regime in C2

which will upset that stability.
In the future, people will want to distribute C2,

and go out into vehicles and separate into isolated
arenas functions that once sat in the same com-
mand post. Communications systems will net
these modular capabilities. The hardware and
software base will be made so that the modules
will be interchangeable, bringing new system
engineering into C2 that hasn't been first order.
Much system engineering work will have to be
coupled to the hardware and software work.

We're doing worse in the communications and
radar area than in C2 right now, even though the
requirements problems are not as acute. This

HOROWITZ • 93

can be attributed to the explosion in the micro-
processor technology. Systems that once did not
require software now do. Companies that once
didn't have to produce software now do, and
they're going through the process of creating an
infrastructure like the C2 people did in the 1960s,
with all the associated learning steps. In some
cases these companies subcontract, but just as
they are not immediately able to manage an
internal force, they are not well equipped to man-
age an external force.

I don't mean to say this is a problem with
every single contractor on every job, but I think
we are having a very hard time in communica-
tions and in the radar area. In the radar and
communications area, not only is the processing
base getting more and more powerful, but with
things like Very High Speed Integrated Circuit
(VHSIC) technology coming along, and the
demand for fault-tolerant capability, further cou-
pling of hardware and software is going to go up.

One of the problems we see is that the hard-
ware people, the software people, and the systems
engineering people in companies are often sepa-
rate forces. While they are able to bring in a
computer scientist who may be knowledgeable
about software development environments, this
is a long way from bringing in someone who
understands how a radar or an anti-jam radio
system works. It is difficult to imagine a develop-
ment force developing the software, which is so
integral to the performance of a system, and not
understanding the technical functionality. Often,
it takes a long time for companies to integrate
that knowledge into their software group by

bringing these system engineering and hardware
people into that group. All the companies should
really be thinking quite a bit about how their
hardware, software, and systems engineering
groups can interrelate, because the demand for
that coupling will increase.

Test is the third thing that I want to talk about.
There is a lack of trust in the development com-
munity — people want to look at software before
making production decisions, and examine it in
the truest environment possible. ESD, being part
of the development hierarchy, is subject to all
forms of scrutiny. There is a real need to help
people understand that the lead times for hard-
ware and software are different. Only then can
we deal with these production decision issues
logically.

There is a lack of confidence not only in Con-
gress, but also on the part of the users and the
buyers, who think that when a big production
decision is made, all the good people leave and a
second team comes in to finish the job. I think
that great pressure will be put on all of us to
ship really good systems. At the time of testing,
both the hardware and software will need to be
ready.

If we can whittle away at the lack of confidence,
then we will be able to control phasing of hard-
ware and software readiness. It will take a large
effort for companies and the government to finish
a project completely, even if it is late. We must
leave time for testing and adequate performance.

94 • HOROWITZ

Brig. Gen. Michael H. Alexander (USAF/FM)

I'm going to talk about some experience I have
had in evolutionary development, particularly
with the World Wide Military Command and

Control System (WWMCCS) Information System
(WIS) Program. In developing information sys-
tems, which are a little different from embedded
systems, often we had to satisfy a user who didn't
know what he wanted as we specified the system
for procurement, who later told the Operations
Test and Evaluation (OT&E) people what he
needed, and their tests were run against criteria
that were not in our specifications. Working with
the user in that OT&E Phase, and with the
requirements that the OT&E people buy off on
before we can proceed, makes for a very tough
problem that we have to continue to work on.

There are some problems in evolutionary devel-
opment acquisition. In my first program at ESD,
we took two aircraft, put the equipment in, flew
them, and determined the winner. As a result,
we had pretty good performance for getting the
competitive prototype.

I have had to go before the Joint Chiefs of Staff
and say, "We're doing Block A very well, but,
trust us; we'll tell you what we're going to spend
the other $835 million on." That is very tough
on the budget side, and it's tough on the user
too, because he's looking for the total capability,
but you're only giving him the first piece. When
that starts to slip, you run into problems with
overall program schedules, funding, and so forth.
Testing is a problem because it is difficult to call
the total OT&E community together to test only
a piece of what they really want to see, which is
an operational concept.

The early phases are very important in evolu-
tionary programming. If you are going to do
evolutionary development, be sure that you know
up front the total system architecture. Do not
sell only the early pieces, promising the rest
later. You must have the overall architecture.

Throughout this conference we have been
discussing requirements, B-specifications, testing,
and other areas with which we have had prob-
lems. We have heard about the competitive con-
cept development (CD) phase, which, frankly, I
introduced at ESD. We had two or three contrac-
tors that thought they knew enough about the
system to bid lower. The final cost was lower,
but deliveries were usually late. The competitive
CD approach has to be done with your eyes open
as well.

We have struggled for the last 15 years trying
to produce software in the same manner that we
acquire hardware. This is true in office automa-
tion, and it is true in any of the information sys-
tems with which I have been involved. We cannot
expect that to work. We have to change the way
we do business.

We need to get the engineers, the software
people, and the corporate organizations together.
This need is not limited to embedded systems or
radars, but is true across the board, particularly
if we are going to use those people early in the
design phase of projects. The whole purpose of
Ada is to bring the engineers and the system
definition up front early in the program, and to
provide the tools to do that from the beginning.

ALEXANDER • 95

The use of the Ada tools, the Program Design
Language (PDL), and the ability to generate the
pieces of the system from beginning to end allow
you to look at a total system before you sign up
to the total architecture.

We are building portability into our Ada proj-
ects. As part of the demonstration on every proj-
ect, we have required that each program show
operability on two or more different compilers or
in different operating environments. We are well
on the way to establishing the Ada standards
and our interface standards that are needed to
produce the software even before we select the
hardware. Our approach requires the hardware
vendor to come up with the system that will
support our software and our software architec-
ture, not the other way around. Although it is

not an official government standard yet, the
Database Management System (DBMS) Ada/SQL
interface is a major step forward, and we are
requiring our contractors to use it in our joint
mission hardware selection.

The Software Development and Maintenance
Environment (SDME) is not just a conglomeration
of tools to help a software developer; it is intended
to be a life cycle system. It is an environment for
the development and maintenance of all WIS
software.

We are not there yet, but clearly we are
addressing the issues of portability and software
life cycle support, and we are taking major
steps to integrate them into an active, ongoing
program.

96 • ALEXANDER

William L. Sweet
Associate Director for Technology Transition and Training
Software Engineering Institute

I would like to introduce the effort of the Soft-
ware Engineering Institute (SEI) to address
the problem of software acquisition. The Soft-

ware Engineering Institute is a Federally-Funded
Research and Development Center associated
with Carnegie-Mellon University (CMU) that is
not part of industry or government, and is semi-
autonomous from CMU.

In this unique place, the SEI is able to address
problems that are bogged down in acquisition
policy between government and industry, or in
the competitive posture between industry ele-
ments, or in other isolation between industry
and universities. Those traditional barriers have
their place, but they contributed to a very long
time delay between concepts and practice in the
area of new technologies.

In the case of software technologies, already
we can find engineering technologies that are 10
to 15 years ahead of where we now are in our
practice. We have a lot to gain by accelerating
the transition of these concepts into practice.

That is where the Software Engineering Insti-
tute enters. The SEI is not intended to be a foun-
tain of all knowledge on software engineering,
nor a large research effort on software engineer-
ing, but it is intended to be a channel through
which the latest software engineering technolo-
gies can be transmitted to other places and put
into practice. Spreading this use of the latest
technologies can be very beneficial to us as a
nation, and certainly to the Department of
Defense (DOD) contracting community. That is
what the SEI intends to accomplish.

Can we as people change the ways we are
doing our software development and the way we

are doing our acquisition? Maybe what we have
been doing is not appropriate for software.
Clearly, hardware and procurement practices for
hardware came out of the industrial era. As we
enter the information age, we have to think about
new directions. The assumption that we should
use the same ground rules for software acquisi-
tion as are used for hardware has proven
fallacious.

I think we have to ask ourselves what we need
to change, how we should change it, and where
we go from here. We need to move on the prob-
lem. I think ESD is very enlightened, not only to
engage the assistance of MITRE and gain that
added technical strength, but also to co-sponsor
this symposium. I think this is a very important
step on the way to the solution.

It is important for us to remember that the net
intent of the acquisition process regarding soft-
ware is not to provide application code to the Air
Force, but to provide operational capability on
time. The issue of how we get those lines of code
in there should not be viewed as an end in itself;
we need to rapidly do what is necessary to bring
the lines of code into successful operational use.

Ultimate efficiency in developing software
might suggest that we should have hard and fast
requirement specifications and be very rigid in
our approach to developing the software, but in
reality what we want is an operational capability
that meets the need. Looking at the flexibility in
software requirements as an onerous problem in
software development is missing an important
point. The very fact that we can use techniques

SWEET • 97

such as rapid prototyping to enable us to adapt
our requirements as we go along much more
easily than we ever could in hardware is a poten-
tial plus. This enables us to provide systems that
more nearly meet the needs of the real users. It
is important to focus on how we can make use of
new technologies to accommodate changes in
requirements. I think we should anticipate and
use the changes in requirements in a positive
way to better achieve the real intent.

Tony Salvucci talked about the use of oral
exams as a way of eliminating some bidders —
asking questions about bidders' capabilities in
the area of software engineering, rather than
deciding the competitive procurement on the
basis of the proposal alone. I believe that there
are parts of the procurement process that do not
fit into the classical competitive proposal process,
and that one of those is the selection of capable
software development teams. If we were to estab-
lish a strong "oral exam" process whereby bid-
ders or potential bidders knew that a very great
impact would result if they were unable to

present a capable team, we would see a much
greater emphasis on training coders into com-
puter scientists and computer scientists into
software engineers.

As a former member of the defense contractor
community, I'm well aware that the investment
in this upgrading and internal professional train-
ing of people into higher degrees of professional-
ism is quite small compared to the effort that
goes into proposals. If sole-source contracts were
being issued, not on the classical bases, but on
the basis of having excelled in these oral exams,
I think we would find a marked change in the
way we are able to perform on our software.

I would just like to conclude by saying that I
think what is needed is courage in contracting.
There are opportunities out there. We recognize
that software is an extreme challenge to us, and
we should meet the challenge by being excep-
tional in the manner in which we do our
acquisition.

98 • SWEET

John B. Munson
Vice President
System Development Corporation

I was asked to summarize what I heard the last
two days, but first I want to admit that I was
the chairman of one of the studies that have

been referred to earlier as a waste of time and
effort. I would really have to agree with that
opinion, considering some of the frustration I
went through. The software study that we did
for the Air Force's Scientific Advisory Board
three or four years ago dealt with risk manage-
ment, cost uncertainty, the need for development
tools, investment in the future, and solving the
operations and support problem; these are all
still open issues that we have again discussed at
this symposium.

We did try one different approach. Rather than
making a set of free-standing technological rec-
ommendations, we tried to turn this around and
frame them in an institutionalizing set of actions.
This was an attempt to transfer responsibility for
these recommendations to the Air Force, as
opposed to simply telling them what to do.

I think it is interesting that, in general, the
software problem is not just an ESD problem in
the Air Force; it's corporate-wide — every activity,
every division has "a software problem." It turns
out that of all the people and organizations that
we had talked to, from the Chief of Staff of the
Air Force on down, the only organization that
showed any apparent interest in our study was
ESD. I'm very pleased to see that today, some of
the ideas from our study are being implemented
in ESD's procurement practices. That's extremely
encouraging to me.

I have been very impressed with the content of
this symposium, especially the consistency of
the opinion. Generally, there has been very little
controversy, meaning we are in general agree-

ment. During one break I talked to some people
who felt there was a strong industry-versus-
government bias here, but I didn't feel that. I
thought there was much more commonality
than difference of opinion. I think we recognize
the problem clearly, and we can work toward
solving it.

The one thing we have all recognized at this
point is that the problem is very complex. If it
were not, it would have been solved a long time
ago. When building software or intellectual sys-
tems like software, developing the system func-
tionality is just plain hard work. When you forget
that, when you try to look for solutions that don't
involve hard work, I think you get led down the
wrong track.

There is absolutely no technical or manage-
ment substitute for understanding the problem.
Many times our acquisition process forgets that.
The problem isn't just the software engineering
problem; it's equally involved with the applica-
tion problem that we are dealing with. If there
is one thing we've learned, it is that the second
iteration of a problem always seems to go better
than the first, and the third iteration goes much
better than the second. There is a learning curve,
but the learning curve is more on the application
aspect of things, and understanding the problem
with which we are dealing. When the software
people clearly understand the applications that
they are trying to work in, it makes a big
difference.

I think if you look back on some of the success
stories, as opposed to the disasters, you'll find
most of the success stories are related to the fact

MUNSON • 99

that the people who were building the application
understood the technology they were dealing
with, in addition to being good software people.
So, there is no ultimate "software" solution.

I believe that the people who talked about life
cycles got the cart before the horse in many re-
spects. Life cycles shouldn't drive the processes.
The process should drive the life cycle. Life cycles
are around to implement the tools we have to
use, and they are the best ways we have today
of doing it. The software engineering process is
basically a continuous process. The life cycle
makes it artificially discontinuous. Our ultimate
goal should be to take all of that discontinuity
out of the life cycle and go from requirements to
application with no stops in between. Since we
can't do that today, we put discontinuities in to
provide us with visibility and control.

We must be careful not to get locked in to an
essentially artificial process and not recognize
new ways of doing business. New tools have
implicit life cycles in them. Dr. Boehm's discus-
sion of a spiral life cycle tended to emphasize
that it's the problem you are solving that drives
the life cycle, not the other way around. We must
remember that and keep that in mind as we
search for new solutions.

While I conceded that this symposium seemed
to have reached a consensus, what still scares
me about this whole process is that I am abso-
lutely convinced we have finally gotten the tech-
nology and the tools to build the systems of the
1960s. If we want to go back and build 1960
systems, we probably know how to do it now.
However, today we are into a whole new world
of applications where the references in DOD-
STD-2167 and Ada say "to be determined" —
distributed systems, federated systems, and
multiprocessors. But maybe that isn't too bad.

Maybe we are at least at a place where we have a
baseline; where we ought to start trying to do
something instead of just talking about it.

One of the recommendations that I would have,
as a result of listening to this discussion, is that
we try to take the talking we've done and the
agreement we have, and try to turn these recom-
mendations into action items. We should make
somebody accountable for putting them into
terms of how to implement them.

As a program manager, I find that there are
many people who can tell you why you can't do
something, and very few of them who worry
about trying to tell you how you can do it, and
then help you do it. I think that is one of the
things we could do to help ESD; we should try to
create an action program as opposed to telling
them why they can't do it. We may be ready for
that.

We should convert our ideas into a set of action
items and see if we can make progress against
them. I am as convinced now as I was when the
Air Force studies were on, that unless somebody
takes responsibility and accountability for mak-
ing these things happen, they will never happen.

Bureaucracy exists to make sure that nobody
is responsible for anything, so that the blame
can be spread over a large number of people and
never focused and isolated. I hope that we as a
group don't continue to behave like a bureau-
cracy. I would like to see us take responsibility
for our suggestions and exhibit the courage of
our convictions. My recommendation is that we
stop talking about it and try to act on some of
these items of consensus and see if we can't
make some real progress. Doing anything, no
matter how little, is better than doing nothing.

100- MUNSON

Barry W. Boehm
Chief Engineer, Software System Division
TRW Defense Systems Group

I would like to discuss my experience so far
on the Defense Science Board Task Force on
Software. I can't really talk about the recom-

mendations until they have been presented and
approved by the Defense Science Board, but I
will cover some personal impressions to date
based on the briefings we've received on Ada,
STARS, people, and data acquisition rights.

The general impression of Ada is that it is not
perfect, but it's better than any alternative that
the Department of Defense (DOD) has right now.
It's mature enough to be required on new pro-
curements, but there should be an option for
exceptions. These exceptions should have a
strong rationale, rather than simply being a
way around the use of Ada.

I believe that the STARS program is really
essential, and will help in consolidating the state
of the art, along with agencies such as the Soft-
ware Engineering Institute. The STARS and SEI
can bring us all up to a reasonably strong level
of capability.

We have looked at studies that say the Services
are short on key people needed to manage acqui-
sitions and software, and that incentives for
retention should be provided to stimulate career
paths. What has happened as a result of those
studies is that people have acted as if the recom-
mendations were going to be implemented and
haven't done anything to compensate for the
shortage of people, but nobody has ever imple-
mented those recommendations. Career paths
for software people in the Services are just as
grim right now as they have ever been, and are
just as attractive outside the Services.

My impression is that it's better to recognize
that we are never going to solve this problem,
and to concentrate on compensating for it. The
DOD would be better off to redeploy the scarce
people they have, and have fewer of their software
experts programming and more of their software
experts managing acquisitions. These people
should be supplemented with Federal Contract
Research Centers (FCRCs), SETA contractors, or
Independent Validation and Verification (IV&V)
agents, so there will be enough people to make
sure the software acquisition goes right.

With regard to rights in data, DOD really needs
a clear, simple regulation that doesn't require a
lawyer to interpret and can be tailored by some-
body in an acquisition organization. A customer's
data rights needs should be determined by the
life cycle plan. Currently, many things are being
asked for and nobody knows why; it's a more-is-
better kind of phenomenon. People ask for un-
limited rights, but they have no idea how the
maintenance will be distributed among the cus-
tomer, the user, and the contractor. The degree
of rights requested has not been related to the
need for the data or software being asked for.

In terms of acquisition, there was a very strong
consensus at this symposium that the most
important thing to do is to focus on getting the
requirements right before locking yourself into
some particular acquisition. There were a couple
of comments that are really just codified common
sense; you ought to get close to the customers
and really have an understanding of what the

BOEHM • 101

users' needs are before going out and trying to
build something for them.

Another interesting concept is that of simulta-
neous loose-tight properties. We feel that DOD-
STD-2167 does not encourage a simultaneous
loose-tight property. It's too easy to over-interpret
into a tight-tight property and get into document-
driven acquisition. If you take a risk management
point of view, it gives you more of an opportunity
to figure out where there should be looseness
and where there should be tightness.

Current initiatives like the revised 5000-29,
revised 800-14, and the initiatives toward DOD-
STD-2167A, appear to be going in the right direc-
tion. ESD doesn't really have to wait for all of

those regulations to come out before doing
something.

I think that others were right in saying that
the most important thing is to handle this prob-
lem of pre-full-scale-development engineering,
and build that into the strategy for acquisition —
including the necessary budgets and schedules.
I have been really impressed with the initiative
that ESD has shown recently in projects such as
the red teams, the orals, and the metrics. You
don't see very many government organizations
coming out with that many new initiatives that
seem to be directed toward the right target. The
track record of initiative here is very encouraging.

102 • BOEHM

A. Paul Arieti
Vice President
Grumman Melbourne Systems Division

We have been critically examining our-
selves for the last two days, and I would
just like to offer that despite our prob-

lems, I think we have developed some pretty
powerful systems. We also have many good meth-
odologies; we just have to bring them up to speed
with the technology. We have a very fast moving
target.

We have computers sitting on desks that 10
years ago were in a pristine computer environ-
ment taking 10 times the floor space. Trying to
make use of the capacities that are in the systems
now, with the software methodologies we have,
is not an easy job. Our situation is analogous to
diving competitions. There is a measure for per-
formance, and there is a measure for degree of
difficulty. I think that in our industry we get the
highest score for degree of difficulty.

Our problem is that the performance is often
too poor to be made up by the high degree of
difficulty. We have to lower our degree of diffi-
culty somewhat to greatly improve performance.
We have to spend more time on requirements,
and we have to work them more completely. We
have to put more emphasis on requirements
prior to Preliminary Design Review (PDR). That
means that there must be agreement on use of
evolutionary programs, more prototyping, and
developing systems and fielding them to the user
as part of the development process.

Many people spoke on the necessity of getting
the right resources and keeping those resources
consistently on the job. More management atten-
tion was another theme for many of the speakers;
getting the managers in early and making sure
they pay attention to what is going on throughout

the process. There was also a lot of talk about
changing the form of contract or possibly dealing
a little bit differently with cost versus fixed-price
during the various phases of the procurement of
a system.

I favor two-phase procurements to minimize
"degree of difficulty." There is a procurement
going through ESD right now that is going to
require of two contractors the B-specifications.
the software development plan, and an engineer-
ing mock-up of the total configuration, all prior
to the PDR. One contractor will then be selected
to implement the system. I think this two-step
procurement process can be very effective in
alleviating many of our problems.

One of the things that we have to do is acceler-
ate the procurement process. We spend too much
time trying to get it right with that first A-specifi-
cation; an award is then given to one contractor
with a five-year span for system development.
There is no way that the initial A-specification
can accurately reflect the correct need five to
seven years after it was written. I favor evolution-
ary procurement and the ability during the con-
tract definition (CD) phase to take another look
at the requirement so that we can be more effec-
tive in developing what the user needs. We can
better ensure that what we develop and deliver
to the customer is going to be a system that is
more acceptable to the user.

I would now like to talk about the review pro-
cess. We can be criticized for not reviewing our-
selves enough, but on the other hand, there is
often too much review by the outside customers

ARIETI • 103

— MITRE, ESD, and the user community. I think the people I have talked to about this concept
the two-phase procurement approach would also believe that it will take longer and cost more. I
reduce the amount of in-process review needed. believe that if we can accelerate the initial pro-
The break between the first and second phases curement process, we can go through the whole
would give ample insight into the design. process faster, spend less money (even with two

I recommend that we look hard at the two-step awards in the first phase), and field a better pro-
process in full-scale development and include in duction system,
the first phase an engineering prototype that
gets evaluated by the user community. Some of

104 • ARIETI

Maj. Gen. Thomas C. Brandt
Vice Commander
Electronic Systems Division

There have been many achievements that
are remarkable if you step back a couple of
decades. That doesn't mean that tough,

systemic problems don't remain; a cultural
change may be required to allow us to overcome
those seemingly intractable problems or chal-
lenges that we will be faced with in the years
ahead. At the same time, I think the record of
man indicates that when he brings forth his best
abilities and his best thinking, he is clever
enough to meet any challenge.

We run into major problems when we get
trapped in our culture — in our thought patterns
— and fall victim to error. When we impute a
causal relation to a sequence of things, we get
into trouble. We might be trapped in larger insti-
tutions by shoddy thinking, which I think we
have an opportunity to overcome.

I want to talk about how we should evolve in
software and where we should go from here. I
believe that we should evolve very slowly. We in
the government must act better and think better,
and more cleverly in our acquisitions, and indus-
try must respond in kind. We must become more
effective and more efficient. We must nurture the
evolution of a profession.

Software engineering today is not a profession,
because it doesn't have attached to it all of the
critical elements that come about when a disci-
pline evolves into a profession. Coders do not
make a profession, programmers do not make a
profession, nor do computer scientists make a
profession. What makes a profession is a basis in
theory and science that then collects empirical
data in large amounts over time. Therefore, a
collective history is built, as well as understand-
ing, and that process usually takes a relatively

long period of time. The experience of failure
allows you to go on to success afterward.

We need to think about concepts such as sanc-
tioned standards of quality, codes of ethics,
metrics of evaluation, education and training
standards, certification, and perhaps ultimately,
within our culture, a more well-understood path
to the top in industry.

We have done a lot of talking, and dialogue is
good. Although we are only describing the prob-
lem and no one is forthcoming with solutions,
half of a solution is a precise understanding of
the problem. As we begin to define, describe,
and examine the problem, the clarity of the solu-
tion will be forthcoming.

It's not the best of times, but it's not the worst
of times either. We keep saying that if there really
is a saving grace for our society, it's our people
with that intellect, that spirit of entrepreneurship,
that willingness to create and discover and do.
We recognize what is to be done. The time to do
it is now.

BRANDT- 105

Speaker Biographies

Biographies

Brigadier General Michael H. Alexander
Brigadier General Michael Alexander recently

retired from the Air Force after serving as the
Joint Program Manager for the World Wide Mili-
tary Command and Control System (WWMCCS)
Information System (WIS) in the Organization of
the Joint Chiefs of Staff. At the same time, he
was the assistant for WIS, Deputy Chief of Staff,
Research, and Acquisition, Headquarters, U.S.
Air Force.

Prior to his assignment to WIS, General Alexan-
der held positions at ESD, including Deputy for
Strategic Systems, Director of the Tactical Long
Range Navigation Systems Office, Assistant Dep-
uty for Command and Control Systems, Deputy
for Iranian Programs, and Deputy for Develop-
ment Plans. He has also been commander of the
Arnold Engineering Development Center.

A. Paul Arieti
Paul Arieti is Vice President of Advanced Sys-

tems in the Data Systems Division of the Grum-
man Corporation. In February of 1986, he was
permanently assigned to the Grumman Mel-
bourne Systems Division to provide senior verifi-
cation and validation of the software development
activity for the Joint STARS Program. Prior to
this assignment, Mr. Arieti was head of Advanced
Programs in the Data Systems Division. This
department provided management of large data
systems programs for new business initiatives.

Mr. Arieti has been with Grumman for over 20
years. He has managed the Grumman Automated
Telemetry Station and formed what is now the
Systems Maintenance Services division of
Grumman.

Ernest C. Bauder
Ernest Bauder is Manager of Air Force Systems

Engineering in GTE's Communication Systems
Division. He is the NSIA Software Committee
representative on CODSIA Task Group 21-83,
which was responsible for industry review of
DOD-STD-2167, the Defense System Software
Development Standard. He was also a member
of the NSIA Software Task Force for Air Force
C3I Applications.

During his 28 years at GTE, Mr. Bauder's
assignments have included Manager of Design
Engineering, Assistant Director of Engineering
for Software, and Manager of TTC-39 Software
Engineering.

Leonard W. Beck
Leonard Beck is group vice president and

manager of the software engineering division at
Hughes Aircraft Company's Ground Systems
Group in Fullerton, California.

The software engineering division is responsi-
ble for all application and product line software
activities. The group's primary business interests
include air defense systems, communications
systems, ground radars, shipboard electronic
systems, and military displays. Mr. Beck has
been with Hughes for over 30 years.

Edward H. Bersoff
Dr. Edward Bersoff is President and founder of

BTG, Inc., a high-technology, Virginia-based
systems analysis and engineering firm involved
in the development of computer-based systems
for the defense and civil sectors. Recently, Dr.
Bersoff and BTG led in the preparation of the
Technical Development Plan for the Software
Productivity Consortium, an association of 14 of
the largest aerospace defense contractors. BTG's

108 • BIOGRAPHIES

microprocessor-based Prototype Ocean Surveil-
lance Terminal (POST) employs modern proto-
typing methodologies and is currently being
deployed to over 50 Navy ships and shore
installations.

Prior to his contributions to BTG. Dr. Bersoff
was President of CTEC, Inc., where he directed
the company's research in software engineering,
product assurance, and software management.

Barry W. Boehm
Dr. Barry Boehm is currently Chief Engineer of

TRW's Software and Information Systems Divi-
sion. His responsibilities include direction of
TRW's internal software R&D program, of con-
tract software technology projects, of the TRW
software development policy and standards pro-
gram, of the TRW Software Cost Methodology
Program, and of the TRW Software Productivity
System, an advanced software engineering sup-
port environment.

Dr. Boehm is currently a Visiting Professor of
Computer Science at UCLA and serves on the
Governing Board of the IEEE Computer Society.
His book, Software Engineering Economics, was
published by Prentice-Hall in September 1981.

Major General Thomas C. Brandt
Major General Thomas Brandt has been the

Vice Commander of the Electronic Systems Divi-
sion of the Air Force Systems Command since
January 1986. He joined ESD after serving as
director of the joint planning staff for space, Office
of the Joint Chiefs of Staff.

From 1979 to 1984 he was assigned to Head-
quarters North American Defense Command
where he served as assistant deputy chief of staff
for space operations; director of space and missile
warning operations; assistant deputy chief of
staff, operations for combat operations; the first
Space Command assistant deputy chief of staff,
operations for combat operations; and deputy
chief of staff, intelligence, for the U.S. Air Force
Space Command.

Delbert D. DeForest
Delbert DeForest is Associate Department Head

of Radar and C3 Software at the MITRE Corpora-
tion. Mr. DeForest joined the MITRE Software
Center as a Group Leader in October 1985 after
22 years of experience in the development of
real-time embedded computer systems. At
MITRE, he has been responsible for the applica-
tions of Software Reporting Metrics to ESD pro-
grams and software acquisition support to the
North Atlantic Defense System and the E-3A
(AWACS) program.

Prior to joining MITRE, Mr. DeForest held a
variety of management and senior staff positions
at Raytheon's Submarine Signal Division, includ-
ing manager of the Software Development
Laboratory where he was responsible for the
development of software at the Submarine
Signal Division.

Jack R. Distaso
Jack Distaso is Assistant General Manager of

the Systems Engineering and Development Divi-
sion in the TRW Defense Systems Group. His
organization develops advanced systems requir-
ing the technologies of networks, data process-
ing and communications, artificial intelligence,
distributed databases, and fault tolerant
architectures. The Systems Engineering and
Development Division is primarily involved in
military command and control systems, sensor
processing systems, weapons systems, manage-
ment information systems, and communications
systems.

Mr. Distaso has been with TRW for over 20
years. He has been manager of a large ballistic
missile defense program. He also served as a
project manager for several projects developing
real-time software for ground and on-board mis-
sile systems.

BIOGRAPHIES- 109

Dennis D. Doe
Dennis Doe is Manager of Engineering Software

and Artificial Intelligence at the Boeing Aerospace
Company. In this capacity, Mr. Doe is the focal
point for software methodology and automation,
artificial intelligence applications, and advanced
software research for aerospace products. He is
also involved in Boeing's Software Automation
program, their Software Standards and Guide-
lines program, their Artificial Intelligence pro-
gram, and their Ada program.

During the past two years, Mr. Doe has been
the leader of the technical group for the Software
Productivity Consortium, an organization involv-
ing 14 major aerospace contractors. The focus of
the consortium is on significant improvements
in software productivity and quality through
advances in methods, techniques, and tools.

For over 27 years, Mr. Doe has served the Boe-
ing Company in many capacities, including soft-
ware and systems engineering assignments on
the Lunar Orbiter, the Short Range Attack Mis-
sile, and the Bl Avionics program.

Barry M. Horowitz
Dr. Barry Horowitz is Group Vice President

and General Manager of the C3I Group for Air
Force Systems at the MITRE Corporation, located
in Bedford, Massachusetts. In this position, Dr.
Horowitz is responsible for MITRE's ESD work
program. Prior to this assignment, Dr. Horowitz
was senior vice president and general manager
of the Bedford C3I Division at MITRE.

Dr. Horowitz joined MITRE in 1969 as a mem-
ber of the technical staff in the Air Transportation
Systems Division in Washington. Transferring
to MITRE-Bedford in 1979, Dr. Horowitz began
working on Air Force-sponsored activities. During
the past seven years, he has played a key role in
MITRE's support for ESD. He was previously the
Bedford Division vice president for programs,
where he was responsible for all of MITRE-Bed-
ford's planning and acquisition programs.

R. Blake Ireland
Blake Ireland established and has since headed

the Software Systems Laboratory in Raytheon
Company's Equipment Division. The laboratory
is responsible for the majority of the Equipment
Division's software engineering.

Mr. Ireland has been associated with software
development for military and government sys-
tems for over 30 years. Prior to joining Raytheon,
he was with the System Development Corpora-
tion and the RAND Corporation. He has been
involved in major programs such as SAGE,
NORAD COC, the Apollo Program, and COBRA
DANE.

Robert J. Köhler
Robert Köhler is President of ESC, Inc., a sub-

sidiary of TRW. Prior to assuming this position,
Mr. Kohler was Vice President for Advanced
Programs and Development in the Space Sys-
tems Division of Lockheed Missiles and Space
Company.

Mr. Köhler spent 18 years at the Central Intelli-
gence Agency, where he was responsible for the
development, engineering, and operation of
sophisticated technical collection systems. Most
of his work had been with the Directorate of
Science and Technology, where his positions
included Director of the Office of Development
and Engineering, and other major assignments.

Lieutenant Colonel William E. Koss
Lieutenant Colonel Edward Koss is currently

assigned to ESD as the System Program Director
for Granite Sentry. Prior to this assignment, he
was the Deputy Program Manager for Logistics
on the WWMCCS Information System program.
Col. Koss spent four years as the Director of
Space Computer Resources at the Air Force Space
Division. He has 11 years of experience in a wide
range of space programs including the Anti-
Satellite Program, the Space Nuclear Detection
Program, MILSTAR, and missions associated
with the first Atlantis space flight.

110 • BIOGRAPHIES

Lieutenant Colonel Koss has a B.S. in Mathe-
matics, an MBA, and a Ph.D. in Finance. He has
published 51 articles and four books on the sub-
jects of Computer Management, International
Affairs, and Finance. He currently serves as tech-
nical consultant and expert witness for the IRS
in court cases on computer leases, and as expert
witness for the Air Force Judge Advocate.

Charles W. McKay
Dr. Charles McKay is Technical Director of the

Joint NASA Johnson Space Center/University of
Houston at Clear Lake Ada Programming Support
Environment Beta Test Site.

In addition to his full professorship and respon-
sibilities teaching courses in Software Engineer-
ing, Control Systems, and Electronics at the
University of Clear Lake, he holds the title of the
first Director of the University's High Technolo-
gies Laboratory, a newly formed organization
dedicated to research, conferences, and institutes
in the high technologies. Private industry, govern-
ment, and academia have benefited from Dr.
McKay's consulting expertise in the areas of
computers and computer automation.

John B. Munson
Jack Munson is currently Vice President and

General Manager of the SDC Space Transporta-
tion System Operations Contract. This is an 800-
percent contract to Rockwell International to
maintain all ground-based software at Johnson
Space Center for support of space shuttle
operations.

During Jack's 30-year career with SDC, he has
managed the development of software systems
primarily for large real-time military computer
applications. In 1984 he led an Air Force Scien-
tific Advisory Board study on "dealing with the
high cost and risk of embedded computer soft-
ware." He is on the Executive Board of the IEEE
Software Engineering Technical Committee and
a member of the Air Force Scientific Advisory
Board.

Gerald E. Pasek
Gerald Pasek is the MILSTAR Mission Control

Program Manager for Lockheed Missiles and
Space Company. In this position, he is directing
the efforts of several hundred technical personnel
to provide survivable command and control for
the MILSTAR Communication System.

Mr. Pasek has more than 25 years of experience
in the conceptual design, development, and proj-
ect management of large DOD systems. He has
specialized in ground support and processing for
satellite systems which are typically software
intensive.

Alan J. Roberts
Alan Roberts is Senior Vice President and Gen-

eral Manager of the MITRE Corporation's Wash-
ington C3I Division. In this capacity, Mr. Roberts
is responsible for corporate management of
national security activities and defense systems
activities. Mr. Roberts was vice president for
strategic systems for MITRE's Bedford Operations
before taking charge of the Washington C3I pro-
grams in 1984.

Mr. Roberts holds a B.S. and an M.S. in Electrical
Engineering from Massachusetts Institute of
Technology. As a research assistant at M.I.T.'s
Digital Computer Lab, he worked on the Whirl-
wind I computer. He was responsible for opera-
tion and maintenance of electrostatic storage,
and he assisted in the installation of the first
magnetic core memory.

Anthony D. Salvucci
Anthony Salvucci is the Assistant Deputy Com-

mander for Strategic Systems at the Electronic
Systems Division. He assumed this position after
serving as assistant for systems acquisition for
ESD's strategic programs.

During more than 25 years at ESD, Mr.
Salvucci has had extensive experience in systems
acquisition. He was executive manager for the

BIOGRAPHIES- 111

acquisition of all Tactical Warning/Attack Assess-
ment programs for the Air Force Systems Com-
mand. He was also director of the NORAD
Cheyenne Mountain Complex Improvement
Program. In this position, he was responsible for
the complete replacement of the communica-
tions, data processing, and display systems for
NORAD's air. space, and missile warning com-
mand centers.

Pamela Samuelson
Since January 1985, Pamela Samuelson has

been the Principal Investigator of the Software
Licensing Project at the Software Engineering
Institute at Carnegie-Mellon University. She has
written an extensive report on the Defense
Department's software acquisition policy which
recommends substantial changes in DOD data
rights regulations affecting software. She has
also written a report on how DOD could improve
its planning for maintenance and enhancement
of software.

Ms. Samuelson is an Associate Professor of
Law at the University of Pittsburgh School of
Law, specializing in intellectual property law
affecting new technologies, antitrust, and broad-
cast regulation. She is the author of numerous
articles on software legal protection.

Major General Henry B. Stelling
Henry Stelling is a Vice President and Director

of the Defense Electronics Operations' Advanced
Develoment Center at Rockwell International.

Prior to assuming this post, Mr. Stelling was a
Major General in the Air Force. His last assign-
ment was as Vice Commander of the Electronic
Systems Division. During his military career,
General Stelling held many important assign-
ments with the Armed Forces Special Weapons
Project and the Directorate of Special Weapons
at Tactical Air Command Headquarters, as Direc-
tor of Space in the Office of the Deputy Chief of
Staff for Research and Development, Headquar-
ters U.S. Air Force.

William L Sweet
William Sweet is the Associate Director for

Technology Transition and Training at the Soft-
ware Engineering Institute. In this capacity, Mr.
Sweet is responsible for the acquisition and
refinement of software engineering technology
and for facilitating the transfer of the best avail-
able technology into widespread use in the soft-
ware-related organizations of U.S. industries.

Prior to joining the SEI, Mr. Sweet was the
Division Chief Engineer of GTE's Government
Systems Group, Western Division. He provided
direction in managing technical support facilities
and methodology for all engineering activities.

Richard J. Sylvester
Dr. Richard Sylvester is Associate Technical

Director in the Information Systems Division
of The MITRE Corporation and Director of the
MITRE Software Center. Previously, he was Presi-
dent and Chief Scientist of the Systems Produc-
tivity and Management Corporation which he
founded in 1981. He was also a technical advisor
on computer resources with the Aeronautical
Systems Division of the U.S. Air Force at Wright
Patterson Air Force Base, Ohio.

Dr. Sylvester has nearly 30 years of experience
in software and acquisition programs encompass-
ing both Army and Air Force weapons systems.
He has been manager of the Mission Operations
and Software Department at Martin Marietta in
Denver and Director of New Jersey Operations at
General Research Corporation.

Nelson H. Weiderman
Dr. Nelson Weiderman has been a member of

the Computer Science faculty at the University of
Rhode Island since 1971. From 1973 to 1983, he
has served simultaneously as Director of their
Academic Computer Center.

112. BIOGRAPHIES

Since July 1985, he has been on leave from
the university, and has an appointment as Visit-
ing Senior Computer Scientist at the Software
Engineering Institute (SEI) at Carnegie-Mellon
University. At the SEI, Dr. Weiderman is the
project leader of the Evaluation of Ada Environ-
ments project.

Charles A. Zraket
Charles Zraket is President and Chief Executive

Officer of the MITRE Corporation. Mr. Zraket is
responsible for MITRE's overall activities, includ-
ing technical, administrative, and financial
aspects on behalf of clients. Prior to this appoint-

ment, Mr. Zraket had been MITRE's executive
vice president since 1978 and Bedford's general
manager for the past year. He was senior vice
president of technical operations from 1975 to
1978, taking on responsibility for all technical
activities of the corporation.

Mr. Zraket joined MITRE at its founding in
1958, and has played a major technical and
management role throughout the company's 28-
year history. He has been a member of MITRE's
Board of Trustees since 1978.

BIOGRAPHIES« 113

The illustration on page 21 was adapted from "Resource
Analysis of Computer Program System Development,"
Alfred M. Pietrasanta, On the Management of Computer
Programming, Auerbach Publishers, 1970.

Managing Editor: Joseph A. Sain

Designer: Debra J. Fiscus

Editors: Nancy J. Dashcund, Brian W. Donovan,
Claudette G. Hanley, Margaret S. Jennings,
Sarah A. Rolph

Copy Editor: Roberta A. Carrara

Phototypesetters: Barbara A. Vachon, Harold L. Xavier

Proofreaders: Harry Goodwin, Kendall H. Maclnnis,
Raymond W. Thuillier

Illustrator: Walter R. Osterberg

With thanks also to: Deborah L. Joy, Joan E. Lavery,
Emily M. Morse, Dorothy B. Statkus, Jeanne M. Tourville,
Joyce B. Wakefield

Printer: MITRE-Bedford Reproduction Services 1/87 IM A60351

MITRE

Sponsored by:

The Electronic Systems Division,
Air Force Systems Command
& The MITRE Corporation

